We have now also found that I reacts similarly with phenylacetylene to yield
1,2,7,8-tetramethyl-4-phenylenbenzo[1,2-b:4,3-b']dihthiophene (II) in 39% yield. The
structure is based on a correct elementary analysis and on its spectral properties.
Similarly, when the other "cyclopentadienonic" fuorenone analogue, 2,3,5,6-
tetramethyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-4-one (III) was reacted with
dimethyl acetylenedicarboxylate and phenyl acetylene, 4,5-dicarboxyatho-
2,3,6,7-tetramethylbenzo[2,1-b:3,4-b']dithiophene (IV) and 2,3,6,7-tetramethyl-4-
phenylenbenzo[2,1-b:3,4-b']dithiophene (V) was obtained. The structure is based on
correct elementary analyses and spectral properties. The NMR spectrum of V shows
four methyl resonances, one of which appears at higher field than the other
three. We ascribe this signal to the methyl group in the 3-position. The shift towards
higher field is probably caused by the anisotropy effect of the neighbouring
phenyl group.

Recently Wyneberg and coworkers and Loader and Timmons prepared several thiophenes and furan analogues of phenanthrene by photochemical induction in
cyclization of thiienyl ethenes. However, the synthesis of benzo[2,1-b:3,4-b']dithiophene
by this method failed. The driving force for the easy de-
carboxylation in the reaction of I and III with acetylenes certainly is the formation of
the aromatic analogues of phenanthrene and similar decarboxylations have been
observed with simple cyclopentadienones.

However, the reaction of III with maleic anhydride and N-phenylmaleimide gave
rise to unexpected products. In both cases evolution of hydrogen sulphide was noticed
and the mass spectra of the isolated product showed molecular ions at 34 mass
units lower than expected for the primary
Diels-Alder adduct and analyzed correctly
for such products. The IR spectra showed
the presence of keto groups and anhydride and
imide rings, respectively. Due to
extremely low solubility, no NMR spectra
could be obtained.

The product obtained from the reaction of III with maleic anhydride was converted
to a dimethyl ester. Its NMR spectrum showed in addition to the CO,CH, resonance at 6.10 ppm
three methyl bands with relative intensities of 3:3:6. On this basis we suggest this diester to be
7,8-dicarbomethoxy-2,3,5,6-tetramethyl-4H-indeno[1,2-b]thiophene-4-one (VI). The

Thiophene Analogues of Fluorene

IV. An Unusual Behaviour of a Cyclopentadithiophenone in the Reaction with Dienophiles

ALLERT K. WIERSEMA** and SALO GRONOWITZ

Chemical Center, Division of Organic Chemistry, University of Lund, P.O. Box 740,
S-220 07 Lund 7, Sweden

We have now also found that I reacts similarly with phenylacetylene to yield
1,2,7,8-tetramethyl-4-phenylenbenzo[1,2-b:4,3-b']dithiophene (II) in 39% yield. The
structure is based on a correct elementary analysis and on its spectral properties.
Similarly, when the other "cyclopentadienonic" fuorenone analogue, 2,3,5,6-
tetramethyl-4H-cyclopenta[2,1-b:3,4-b']dithiophen-4-one (III) was reacted with
dimethyl acetylenedicarboxylate and phenyl acetylene, 4,5-dicarboxyatho-
2,3,6,7-tetramethylbenzo[2,1-b:3,4-b']dithiophene (IV) and 2,3,6,7-tetramethyl-4-
phenylenbenzo[2,1-b:3,4-b']dithiophene (V) was obtained. The structure is based on
correct elementary analyses and spectral properties. The NMR spectrum of V shows
four methyl resonances, one of which appears at higher field than the other
three. We ascribe this signal to the methyl group in the 3-position. The shift towards
higher field is probably caused by the anisotropy effect of the neighbouring
phenyl group.

Recently Wyneberg and coworkers and Loader and Timmons prepared several thiophenes and furan analogues of phenanthrene by photochemical induction in
cyclization of thiienyl ethenes. However, the synthesis of benzo[2,1-b:3,4-b']dithiophene
by this method failed. The driving force for the easy de-
carboxylation in the reaction of I and III with acetylenes certainly is the formation of
the aromatic analogues of phenanthrene and similar decarboxylations have been
observed with simple cyclopentadienones.

However, the reaction of III with maleic anhydride and N-phenylmaleimide gave
rise to unexpected products. In both cases evolution of hydrogen sulphide was noticed
and the mass spectra of the isolated product showed molecular ions at 34 mass
units lower than expected for the primary
Diels-Alder adduct and analyzed correctly
for such products. The IR spectra showed
the presence of keto groups and anhydride and
imide rings, respectively. Due to
extremely low solubility, no NMR spectra
could be obtained.

The product obtained from the reaction of III with maleic anhydride was converted
to a dimethyl ester. Its NMR spectrum showed in addition to the CO,CH, resonance at 6.10 ppm
three methyl bands with relative intensities of 3:3:6. On this basis we suggest this diester to be
7,8-dicarbomethoxy-2,3,5,6-tetramethyl-4H-indeno[1,2-b]thiophene-4-one (VI). The

Received August 13, 1970.
product isolated from the reaction of III with maleic anhydride and \(N\)-phenylmaleimide thus being the anhydride (VII) and the \(N\)-phenylimide VIII corresponding to VI.

VII and VIII have been formed by 1,4-addition of maleic anhydride and \(N\)-phenylmaleimide to the formal diene system of a thiophene ring followed by aromatization through the subsequent loss of hydrogen sulphide. Thiophenes do not normally undergo the Diels-Alder reaction. Exceptions are \(C\)-annelated systems like benzo[\(c\)]thiophenes (isothionaphthenes), where the formation of a complete benzene ring provides a strong driving force. Some polycyclic aromatic systems containing thiophene rings also undergo the Diels-Alder reaction (for review, cf. Ref. 5). However, the fact that different "dienic" parts of III react with different dienophiles is very rare and as far as we could find has not been observed. Only the reaction of tetrachloro-o-benzoquinone with different olefins or acetylenes is somewhat reminiscent. Besides the "normal" dienic behaviour of the carboyclic ring the 1,2-diketo grouping reacts in a pseudo Diels-Alder fashion with some olefins to give benzodioxanes. The reason for the different behaviour of I and III and especially the reaction pattern of III needs further study. Many factors which influence the Diels-Alder reaction can play a role (for discussion, cf. Ref. 8) and we believe that the ease with which aromatization of the primary adducts take place can play an important role in determining the product distribution.

As mentioned before non-cyclopentadienyltetramethyl substituted thiophene analogues of fluorenone did not undergo the Diels-Alder reaction and recently Professor Wynberg has informed us that this is also true for the non-methylated parent compounds of I and III. The activating effect of methyl groups on Diels-Alder reactions is evident from the reaction of naphthalene and 1,2,3,4-tetramethyl naphthalene with maleic anhydride.

Experimental. 4,5-Dicarbomethoxy-2,3,6,7-tetramethylbenzo[2,1-b:3,4-b']dithiophene (IV). A solution of 0.30 g (1.2 mmole) of 2,3,5,6-tetramethyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-4-one and 2.0 g of dimethyl acetylene dicarboxylate in 25 ml of dry DMF was boiled under reflux for 1.5 h. The solvent was removed in vacuo. The residue was recrystallised from methanol, yielding 200 mg (46 %) of the title compound as white leaflets. Further crystallization from methanol gave analytically pure product, m.p. 214.5—215.5°C. Mass spectrum: \(m/e, \%\): 214, 16.4; 213, 16.4; 212, 16.4. 1H NMR (CDCl\(_3\)): \(\delta_{CH3} = 2.05, 2.05, 2.05\) ppm. 31P NMR (CDCl\(_3\)): \(\delta_{CH3} = 8.06, 8.06, 8.06\) ppm. 80 UV (cyclohexane): \(\lambda_{max} (log \epsilon) 223 (4.31); 232 (4.29); 276 (4.58); 304 (3.99); 315 (3.97). [Found: C 59.2; H 4.97; S 17.7. Calc. for C\(_{18}\)H\(_{18}\)O\(_3\)S\(_3\): C 59.65; H 5.01; S 17.69].

1,2,3,4-Tetramethyl-4-phenylbenzo[2,1-b:3,4-b']dithiophene (V). A solution of 0.30 g (1.2 mmole) of 2,3,5,6-tetramethyl-4H-cyclopenta[2,1-b:3,4-b']dithiophene-4-one and 3.0 g of phenylacetylene in 25 ml of dry DMF was boiled under reflux for 3 days. The solvent was removed in vacuo and the residue was dissolved in benzene and eluted over alumina, with benzene as eluent. The first fraction gave upon evaporation a yellow oil, which was dissolved in a small amount of ethyl acetate. Addition of methanol gave solid material which was re-crystallized from ethanol, yielding 70 mg

(18 %) of the title compound, m.p. 147—148°C. Mass spectrum: (m/e, %) 146, 7.4; 291, 5.3; 305, 5.6; 307, 18.8; 321, 11.8; 322, 100; 323, 25.8; 324, 12.6. PMR (CDCl3): τCH3 2.62, τH 2.67, τCH 7.50, 7.57, 7.71, and 8.17. UV (cyclohexane): λmax μg (log ε) 220 (4.40); 238 sh (4.25); 270 (4.55); 300 (4.10); 312 sh (4.03); 333 (3.44). [Found: C 73.7; H 5.51. Calc. for C21H14NO5S2 (322.5): C 74.49; H 5.63].

2,3,5,6-Tetramethyl-4H-indeno[1,2-b]biphenyl-4-one-7,8-dicarboxylic acid anhydride (VII). A solution of 0.3 g (1.2 mmole) of 2,3,5,6-tetramethyl-4H-cyclopenta[2,1-b:3,4-b']diphenyl-4-one and 2.0 g of maleic anhydride in 25 ml of dry DMF was boiled under reflux for 1 h. The smell of hydrogen sulphide was removed. After removal of the solvent in vacuo, the residue was treated with 10 ml of ethyl acetate. The undissolved solid was filtered off and recrystallized from dioxane, giving 150 mg (40 %) of the orange-red title compound, m.p. 279—280°C. Mass spectrum: m/e 312. IR (KBr): 1840, 1775, 1705, and 1640 cm⁻¹. UV (dioxane): λmax μg (log ε) 248 (4.42); 267 sh (4.24); 299 sh (4.05); 308 (4.07); 336 sh (3.82); 380 sh (3.76); 393 (3.78); 450 (2.94). [Found: C 64.9; H 3.57; S 10.4. Calc. for C14H10O8: C 65.7; H 3.57; S 10.27].

7,8-Dicarboxymethoxy-2,3,5,6-tetramethyl-4H-indeno[1,2-b]biphenyl-4-one (VI). 160 mg (0.5 mmole) of VII were refluxed over night with 50 ml of dioxane, 50 ml of water and 5 g of sodium hydroxide. The solution was poured into water and acidified. The crude acid was filtered by suction and esterified with an excess of diazomethane, yielding 180 mg (98 %) of the title compound, m.p. 174—175°C after recrystallization from chloroform-hexane. IR (KBr): 1725, 1700 cm⁻¹. PMR (CDCl3): τCO2CH3 6.10, τCH3 7.50, 7.77, 7.87. [Found: C 63.8; H 5.18; S 8.87. Calc. for C14H10O8S (358.4): C 63.67; H 5.06; S 8.95].

The Diels-Alder reaction of II with N-phenylmaleimide (VIII). A solution of 0.3 g (1.2 mmole) of 2,3,5,6-tetramethyl-4H-cyclopenta[2,1-b:3,4-b']diphenyl-4-one and 0.3 g of N-phenylmaleimide in 25 ml of dry DMF were boiled under reflux for 24 h. Evaporation of the DMF in vacuo left a residue which was extracted with ethyl acetate, leaving an orange coloured substance. Recrystallization from chloroform-hexane yielded 50 mg (13 %) of VIII, m.p. 330—331°C. Mass spectrum: m/e 387. IR (KBr): 1715, 1700, 1615 cm⁻¹. [Found: C 69.4; H 4.57; N 3.72. Calc. for C21H17NO6S (387.5): C 71.30; H 4.42; N 3.62].

1,2,7,8-Tetramethyl-4-phenylbenzo[1,2-b:4,3-b']dithiophene (II). In a similar way as described for V, 150 mg (39 %) of the title compound was obtained from 0.2 g of 2,3,5,6-tetramethyl-7H-cyclopenta[1,2-b:4,3-b']dithiophene-7-one.1 M.p. after sublimation and recrystallization from ethanol 153.5—155°C. Mass spectrum: (m/e, %) 145, 5.2; 146, 5.7; 161, 8.5; 307, 19.7; 321, 7.9; 322, 100; 323, 24.4; 324, 11.4. PMR (CDCl3): τarom 2.44, τCH3 7.46, 7.52, 7.57. UV (cyclohexane): λmax μg (log ε) 257 (4.40); 275 sh (4.13); 285 (4.16); 320 (4.35). [Found: C 74.4; H 5.72. Calc. for C19H14O2S2 (322.5): C 74.49; H 5.63; S 19.89].

PMR spectra were obtained with a Varian A60 high resolution spectrometer, mass spectra with an LKB 900 mass spectrometer and UV spectra with a Unicam SP 800 spectrophotometer.

Acknowledgements. Grants from the Swedish Natural Science Research Council to S.G. and the Faculty of Science of the University of Lund to A.K.W. are gratefully acknowledged.

Received August 24, 1970.