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Iodine Oxides

Part III.* The Crystal Structure of I,O;
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1,0, crystallizes monoclinically with a=11.036(3) A, b=5.063(1)
A, ¢=8.135(2) A, p=107.18(2)°. (Standard deviations are appended
in brackets.) The space group is P2,/c and the unit cell contains 2 x 4
I and 56X 4 O in position 4(e). The following values were found for
the positional parameters: I(1) x=0.1260(2), y=0.1143(6),z=0.2136(3);
I(2) x=0.3730(2), y=0.6825(5), 2=0.1597(3); O(1) x=0.015(3),
y=0.850(7), z=0.154(3); O(2) £=0.193(2), y=0.041(7), 2=0.434(3);
O(3) 2=0.486(2), y=0.862(6), 2=0.333(3); O(4) z=0.309(2),
y==0.492(6), 2=0.300(3); O(5) *=0.250(2), y=0.968(6), 2=0.116(3).
The iodine atoms exhibit anisotropic thermal motions, whereas
isotropic temperature factors were adequate for the oxygen atoms.

Molecular I,O4 units are distinguishable in the structure, although
fairly strong intermolecular forces are present in the lattice as clearly
evidenced by the occurrence of intermolecular I—O distances as
short as 2.23(3) A. The I,0, structure is briefly compared with that
of HI;0,=HIO,;-I,0; and a tentative discussion of the chemical
bonding is presented.

In the fifth period of the Periodic System there exists a consecutive series
of binary oxides in which the oxidation state of the other component is
N —2 (N =Group number), i.e. SnO, Sb,04, TeO,, 1,0;, and XeOQ,;. With
the notable exception of I,0;, the crystal structure of at least one modifica-
tion of each of these compounds is known. The crystal (and molecular) struc-
ture of (di)iodine pentoxide represents a challenging lack of knowledge and
this deficiency ought to be corrected for inter alia the following reasons.

Two crystalline modifications are known for Sn0O,!? the stable form being a typical
layer structure of the PbO type. In the cubic form of SbyO4® there occur discrete Sb,0,
molecules, whereas molecular units are indistinguishable in the orthorhombic modifica-
tion,* which consists of infinite double chains. One of the modifications of TeO, is com-
monly assumed (¢f., e.g., Refs. 5, 6) to crystallize with the TiO,-rutile type structure and
its chemical bonding has consequently been interpreted as ionic. However, later work %»®
suggests very strongly that this structure is only related to, rather than isostructural

* Part I Acta Chem. Scand. 22 (1968) 3309.
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with, that of TiO,-rutile and that its bondings are in fact essentially covalent. The latter
interpretation applies apparently also to the second form * of TeO, which takes a TiO,-
brookite like structure. The crystal structure of XeQ,' is composed of discrete molecules
corresponding to the formula.

Considering oxides with the same stoichiometry as I,0, it may be mentioned that
the stable crystal structure of N,O," consists of NO,* and NO,™ ions. The bonding in
the three crystalline forms of P,O; is on the other hand definitely covalent. The metastable
rhombohedral form 12 preserves the P,0,, molecules of the vapour, the stable orthorhombic
modification 1* arranges linked PO, tetrahedra in a three-dimensional network, and a
third, orthorhombic modification !¢ consists of infinite corrugated sheets of interlocking
rings based on PO, tetrahedra.

On this basis there are accordingly several possibilities for the hypothetical
crystal structure of I,0,, ranging from discrete single molecules, through
various kinds of polymerized molecules to a giant three-dimensional molecule
or even the other extreme, an ionic lattice.

Provided the 1,0, structure turns out to be of the simple molecular type
it is of interest to test the two schematic descriptions of the molecule

which often are found in textbooks. In the extreme of case A each atom would
obtain complete octets, whereas expanded octets on the iodine atoms are
implied in case B. Although essentially different in the starting-points, the
cases A and B may be united by assuming a degree of double bond character
in relevant parts of the molecule. This may be specified as = back-bonding
from a filled p-orbital on the end oxygens to an empty d- (or f-) orbital on the
iodines in addition to the regular o-bonds.

The crystal structure of anhydro iodic acid!® (HI;O3=HIO,-1,0;) has
already shed some light on the problem. In this structure molecular units of
1,0, are distinguishable and the interpretation of the bond distances within
the 1,0, unit suggests that the z-character of the bonding of the end oxygens
to iodine must be appreciable.

The hitherto available information on the molecular structure of 1,04
itself is due to Duval and Lecomte,’®* who concluded that the solid phase
contains molecular units of the type A or B above on the basis of infra-red
spectroscopic data. Regarding the symmetry of the I,0, molecule they sug-
gested Cyy, i.e. that two mutually perpendicular mirror planes pass through
the oxygen atom bridging the two I0, groups. If this is the case the symmetry
of the molecule in I,0; itself would indeed be very different from that of the
corresponding unit in HI,0,.15

Methods for the preparation of pure I,0; and some of its crystallographie
data are previously reported by the present authors.!?
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EXPERIMENTAL

. Single crystals of 1,0, were obtained by sublimation from powdered I,0; at 260°C.'?
Due to their hygroscopic properties the crystals were mounted and sealed in thin-walled
boron-lithium-glass capillaries.

Single crystal X-ray photographs were taken in an integrating Weissenberg camera
of 57,3 mm diameter with Zr-t%ll;;ered MoKa-radiation using the multiple-film technique.
Three-dimensional data of, in all, 1127 reflections (313 with zero intensity) were collected
from, the layers k0l to A3l.

The intensity measurements were carried out microphotometrically except for the
weakest reflections which were estimated visually by comparison with a standard scale.
The intensities of the reflections from different layers were as a first approximation
assumed to be on the same scale. The true scale factors were determined during the least
squares refinements.

The intensities were corrected for the combined Lorentz and polarization factors,
and for absorption (crystal shape approximated to a cylinder; uR=1.1) and secondary
extinction.

The computational work, including corrections, data reductions, scalings, and full
matrix least squares refinements of the structure factors, and calculations of interatomic
distances and angles, was performed on the electronic computer CDC 3300 using in
most cases programmes by Dahl et al.*®

The atomic scattering factors used in the calculations of F.-values were taken from
Hanson et al.®* The unobserved reflections were omitted from the least squares refine-
lr;x’e?lt;s,za;d were not included in the calculations of the reliability factors (R=3||F | —

AL SIE ).

Anisotgopic and isotropic thermal vibrations of the atoms were considered, using

the expressions:

eXp[— (B1:1h2+ Bask? + Byal®+ 2 B1ahk+ 2 B15hl+ 2 B5kl)]
exp[— B sin0/A%]

_Throughout this paper the calculated standard deviations are appended in brackets
behind the corresponding parameter values, only the last digit(s) being given in each
case. -

o CRYSTAL DATA

1,0, M =333.81.

Needle shaped single crystals with diad axis along the needle axis.
Monoclinic. '

a=11.036(3) A, b=5.063(1) A,

c= 8.135(2) A, p=107.18(2)°.

Unit cell volume: 434.3(2) AS3.

Observed density: 5.08 gem™3 at 25.00°C.

Unit cell content: 4(Z,=3.98) 1,0, groups.

Systematic extinctions:

kOl absent when l=2n+1,

0k0 absent when k=2n+1 (experimental verification somewhat uncertain).
Space group: P2,/c (the possible space groups Pc and P2/c were excluded as
a result of the structure determination).

(The above data are mostly taken from the preceding paper.l?)

STRUCTURE DETERMINATION AND REFINEMENT

The approximate positions of the two crystallographically independent
iodine atoms were easily deduced from a three-dimensional Patterson synthesis.
A reasonable interpretation of the Patterson map could only be obtained in
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terms of space group P2,/c and the (possible, but unhkely) space groups
Pc and P2/c were accordingly eliminated at this stage.

After a preliminary refinement of the atomic coordinates of iodine (giving
R=0.18), the positions of the oxygen atoms were expected to appear in a
three-dimensional Fourier map based on these parameters for the two iodine
atoms only. However, the interpretation of the Fourier synthesis was disturbed
by the occurrence of a number of false peaks around each iodine at distances
corresponding to the expected I — O bond lengths. The false peaks were clearly
caused by termination errors in the Fourier series, the same problem being
also encountered in the structure determinations of HI;04'® and «-HIO,.20
After some confusion, five probable peaks of approximately equal heights
were picked out for the oxygen atoms, which would give an I,0; molecule with
similar geometry (viz. comparable bond distances and angles) to that of the
I,0; unit in the structure of HI,04.15

A subsequent Fourier synthesis with the five oxygen atoms included
lead to confidence in the proposed structure and least squares refinement was
accordingly started. The first refinement cycles were performed with isotropic
temperature factors for all atoms. On the assumption that the observed inten-
sities on the different layers were on the same scale an R-value of 0.14 was
obtained, which was improved to R = 0.12 after the first scaling and subsequent
refinement. After a second scaling and correction for secondary extinction,
anisotropic temperature factors were introduced for the iodine atoms, giving
R=0.091. A third scaling and further iterations by the method of least squares
gave R=0.089, which proved to be the termination of the refinement. The
correctness of the proposed structure was at this stage ascertained by a
difference Fourier synthesis. The allowance for anisotropic thermal motion
of the oxygen atoms gave only insignificant improvement in R (and virtually
identical positional parameters) and this possibility is, for example, strongly
rejected by application of the Hamilton # test.

The final positional and thermal parameters (with standard deviations)
are listed in Table 1 and a comparison of observed and calculated structure
factors is presented in Table 2.

Table 1. Final positional and thermal parameters for the crystal structure of I,0;. (All
atoms in position 4(e): +(z,y,2; ¢, —y, }--2) of space group P2,/c.) _

1(1) I(2) 0O(1) 0(2) 0(3) 0(4) 0(5)
x 0.1260(2) | 0.3730(2) | 0.015(3) | 0.193(2) | 0.486(2) | 0.309(2) | 0.250(2)
y 0.1143(6) | 0.6825(5) | 0.850(7) | 0.041(7) | 0.862(6) | 0.492(6) | 0.968(6)
z 0.2136(3) | 0.1597(3) | 0.154(3) | 0.434(3) | 0.333(3) | 0.300(3) | 0.116(3)
B — — 1.7(4) 1.2(4) 1.2(4) 0.9(3) 1.1(3)
Bii | 0.0011(2) | 0.0015(2) - - i - :
Bae | 0.0075(17)] 0.0073(17) — — — — —
Bas 0.0043(3) | 0.0048(3) —_ - — — —
2842 |—0.0009(5) |—0.0012(6) — — —_ —_ —
285 | 0.0021(3) | 0.0029(3) — - — — —_
28,: | 0.0005(8) |—0.0012(8) — - — — _
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Table 2. Observed and calculated structure factors for 1,0,. The five numbers in each
column represent respectively &, k, !, 10|F |, and 10F,. (U=unobserved.)
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Table 2. Continued.
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Table 2. Continued.
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DESCRIPTION AND DISCUSSION OF THE STRUCTURE

Important interatomic distances and angles calculated from the unit cell
dimensions and the positional parameters in Table 1 are given in Table 3.
Fig. 1 shows the structural arrangement projected along [010].

The crystal structure of 1,0, may to a reasonable approximation be
described as a molecular structure, the molecular units being easily recognized
in Fig. 1. The I,0; units may be regarded as composed of two I0; pyramids
which have one oxygen atom in common, which gives a molecular geometry
of the type 0,1 — 0 —10, with two different kinds of oxygen atoms, i.e. the
bridge oxygen O(5) and the end oxygens O(1), O(2), O(3), and O(4). The
intramolecular distances iodine-oxygen (see Table 3) follow the same distinc-
tion, since those which involve the bridge oxygen (1.92—1.95 A) differ highly
significantly from the others (1.77—1.83 A) according to the significance
test of Cruickshank.?2:2 (The mutual differences within both of the two
categories are on the other hand insignificant.) The molecular unit is found
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Table 3. Important interatomic distances and angles in the crystal structure of I,0;.

(The standard deviations correspond to those in the positional parameters.)

Interatomic distances (A)
I(1)—0(1) 1.78(3)
Intra- I(1)—0(2) 1.77(3)
molecular I(1)—-0(5) 1.92(2)
1(2)—0(3) 1.83(3)
1(2)—0(4) 1.79(3)
I(2)—0O(5) 1.95(3)
I(1)—0(1) 2.45(3)
Inter- I(1)—0(1) 2.94(3)
molecular I(1)—0(2) 3.12(3)
I(1)—0(4) 2.72(3)
I(2)—0(2) 2.54(3)
I(2)—0(3) 2.23(3)
1(2)—0(3) 3.26(2)
I(2)—0(4) 3.25(3)
Interatomic angles (°)
O(1)—I(1)—0(2) 99.5 (1.3)
0(1)—I(1)—0(5) 96.5 (1.2)
Intra- 0(2)—I(1)—0(5) 101.9 (1.0)
molecular
0(3)—I(2)—0(4) 94.8 (1.1)
0(3)—I(2)—0(5) 93.1 (1.1)
0(4)—I(2)—0(5) 97.5 (1.0)
I(1)—0(5)—I(2) 139.2 (1.4)
O(1)—I(1)—0(1) 90.6 (1.2)
0(1)—I(1)—0(2) 775 (1.0)
0(1)—1(1)—0(4) 93.7 (.9)
0(2)—1(1)—0(4) 80.2 (1.1)
0(4)—I(1)—0(5) 79.2 (1.0)
Inter- 0(1)—I(1)—O0(4) 175.5 (1.1)
molecular 0(1)—=I(1)—0(5) 172.9 (1.1)
0(2)—1(2)—0(3) 94.9 ( .9)
0(2)—1(2)—0(4) 81.3 (1.0)
0(2)—1(2)—0(5) 81.0 (1.0)
0(3)—I(2)—0(3) 91.7 (1.0)
0(3)—I(2)—0(4) 89.6 (1.0)
0(2)—1(2)—0(3) 172.3 ( .8)
0(3)—I(2)—0(5) 171.1 ( .9)
I(1)—O(1)—I(1) 136.2 (1.3)
I(1)—0(2)—1(2) 146.0 (1.2)
I1(2)—0(3)—1(2) 133.8 (1.3)
I(1)—O(4)—1(2) 128.0 (1.2)
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Fig. 1. The crystal structure of 1,0, projected along [010]. The numbering of the crystal-
lographically non-equivalent atoms is shown on the left hand side of the diagram. Intra-
and intermolecular bonds are indicated as full and broken lines, respectively.

to possess no mirror plane of symmetry, which is in marked contrast with
the configuration C,, proposed by Duval and Lecomte.1®

It is of considerable interest to compare intramolecular distances and
angles in the structure of I,0; with the corresponding quantities in the struc-
ture of HI;O;. (The numbering of the non-equivalent atoms is chosen in
order to facilitate direct comparison with the paper of Feikema and Vos.1%)
The two categories of iodine-oxygen distances (vide supra) have virtually
identical average values (1.96 and 1.79 A, respectively, in HI;Oy) in the two
structures, the individual values being slightly more scattered in I,0; than
in HI O4. The intramolecular angle I(1)—0(5)—1I(2) is considerably larger
in 1,05 than in HI;O4 (139.2 versus 125.8° the difference must clearly be
classified as highly significant). The intramolecular angles O —-I—O show
some scatter in both structures (93.1 —101.9° with average 97.2° in 1,0, and
88.1 —98.1° with average 94.4° in HI;O;). In a somewhat superficial considera-
tion of the structures there appears to be no particular justification for separate
discussions of the O —I — O angles around I(1) and I(2) or for making a distinc-
tion between those which involve O(5) and the others. The most notable
difference between the 1,0, unit in the two structures concerns the relative
orientation of the I0; pyramids (in other words the end oxygens). In the
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HI,O4 structure O(1), O(2), O(3), and O(4) all lie on the same side of a plane
through I(1), O(5), and I(2), whereas in the structure of 1,0, O(1) and O(4)
are located on one side of the corresponding plane and O(2) and O(3) on the
other.

Each molecular unit in the I,0; structure is linked to adjacent molecular
units vie short intermolecular I — O distances (cf. Table 3). These close contacts,
which occur only at the end oxygens, give the structure a character of a firm
three-dimensional network. Each end oxygen forms two such contacts, one
being always markedly shorter than the other (¢f. Table 3, where their mutual
differences are seen to be >>0.49 A). Although both these categories of inter-
molecular I—0O distances (2.23—2.72 versus 2.94—3.26 A) are shorter than
the van der Waals distance (~3.5 A), there appears to be a fundamental
distinction between them since the former category (i.e. distances indicated
by broken lines in Fig. 1) almost certainly represents bonding interaction
whereas the latter includes distances which essentially may be caused by the
geometry of the crystal structure. Hence, counting only I-O distances
<2.72 A, the immediate coordination of (five) oxygen atoms around each
iodine atom is that of a distorted octahedron with one corner vacant. (If the
second category of intermolecular I-O distances (vide supra) also were
included, the coordination numbers of I(1) and I(2) would increase to 7 and
their coordination polyhedra would become distorted variants of the type
named capped (or face-centred) octahedron.) Pseudo octahedral coordinations
for iodine are also found in the crystal structures of the oxo-acids «-HIO,,20,24
HI,O,,' and H 1042526 and in several iodates, e.g. LilO;,2? NalO,4,28 Ce(10,),,2°
and Ce(I10;),-H,0.3%3 The most likely coordination number for all oxygen
atoms in the I,0; structure is two, the angles of these I — O —I configurations
being found in the range 128.0 —146.0° (¢f. Fig. 1 and Table 3).

The intra- and intermolecular I -1 (3.62 and >3.74 A) and O —0Q (=>2.67
and >2.69 A) distances in I,05 appear to be consequences of the crystal
structure and are accordingly regarded as essentially non-bonding, even when
they are shorter than the corresponding van der Waals distances of 4.3 and
2.8 A, respectively.

The fact that iodine is a large and easily polarizable atom, which, judging
from the free atom, has a number of empty orbitals accessible within reasonable
energy, renders a discussion of its bonding properties difficult and possible
conclusions are likely to be of a speculative character. The oxygen atom is,
on the other hand, considerably smaller in size and it has only a few orbitals
available for bonding.

The most fruitful starting-point for some elementary bonding considera-
tions of the I,0; structure appears to be O(5). If two pure p-orbitals on O(5)
were involved in its bondings to I(1) and I(2), the bend angle I(1)—O(5) —I(2)
should have been 90° which consequently would have led to an intramolecular
1(1) —I(2) separation of about 2.73 A retaining the observed I —O(5) distances.
However, such an I(1)—I(2) separation would have been far too short in
view of the large atomic size of iodine (vide infra). This steric factor would
indeed enforce an appreciable opening out of the I(1)—0(5)—1(2) angle and
the repulsion between the charges which are likely to be found on the iodine
atoms may contribute to further enlargement of the angle. Hence, the observed
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