Tentatively Standardized Symmetry Coordinates for Vibrations of Polyatomic Molecules

XIII. Molecular Models with C_{2n} Symmetry

S. J. CYVIN

Institutt for teoretisk kjemi, Norges tekniske høgskole, Trondheim, Norway

Molecular models of C_{zv} symmetry are surveyed with special reference to the structures of some small molecules containing sulphur. Suitable sets of symmetry coordinates are specified for two new models of this category, which are applicable to the structure of thionyl tetrafluoride and a possible structure of sulphuric acid.

number of molecular models with symmetry C_{2v} have been treated in Asome of the previous parts (I-XII) of this series. 1-12 They are surveyed in the following.

(i) Bent symmetrical XY_2 , planar $cis-X_2Y_2$, planar symmetrical XY_2Z . (ii) Planar $cis-XY_2Z_2$ with linear XY_2 chain, bent symmetrical $X(YZ)_2$ with linear XYZ chains, planar symmetrical XY2Z2, twisted symmetrical XY_2Z_2 .

(xii) Four models of planar five-membered ring structures.

During recent electron-diffraction and spectroscopic studies of small molecules containing sulphur several other structures of C_{2v} symmetry have been encountered. The twisted symmetrical XY_2Z_2 model ² applies to the structure of sulphuryl chloride ¹³⁻¹⁵ and sulphuryl fluoride. ¹⁶ The same model is applicable to sulphur tetrafluoride, ¹⁷⁻¹⁹ although the ZXZ (i.e. $F_{ax} S F_{ax}$) angle must be taken as slightly more than 180° (see Fig. 1). An extension of this model to XY_2Z_2W (cf. Fig. 2) is applicable to thionyl tetrafluoride. Kimura and Bauer ¹⁷ had reported a ZXZ (i.e. F_{ax} S F_{ax}) angle $<180^{\circ}$ for this molecule, but this investigation has been revised by Hencher et al.²⁰ with the result of a value $>180^{\circ}$ (see Fig. 1).

One of the above cited works 16 contains a spectroscopic analysis of chloroand fluoro sulphonic acid, based on recent experimental data.^{21,22} These molecules are believed to have a C_s structure, but sulphuric acid ²³ has probably a $C_{2\sigma}$ structure (cf. Fig. 3). A spectroscopic investigation of other systems of the types $X - SO_2 - Y$ (C_s) and $X - SO_2 - X$ (C_{2n}) has been reported.²⁴

Acta Chem. Scand. 24 (1970) No. 5

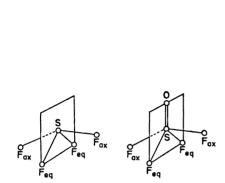


Fig. 1. Schematic structures of sulphur and thionyl tetrafluorides.

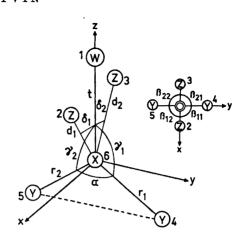


Fig. 2. The twisted-axial XY_*Z_*W molecular model; symmetry C_{2v} . The equilibrium X-Y, X-Z, and W-X distances are denoted by R, D, and T, respectively. Two additional parameters are needed in order to define the structure, e.g. the equilibrium angles 2A (YXY) and 2A (ZXZ).

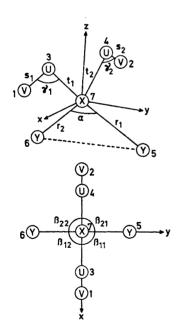


Fig. 3. The twisted $XY_2(UV)_2$ molecular model; symmetry C_{2v} . Equilibrium parameters: R(X-Y), T(X-U), S(U-V), $2A(\angle YXY)$, $2A(\angle UXU)$, $\Gamma(\angle XUV)$. The torsional coordinates τ_1 and τ_2 (not indicated on the figure) involve the atoms 1-3-7-4 and 2-4-7-3, respectively.

In the present work two of the above mentioned models are treated as a part of the systematic compilation of suitable symmetry coordinates for molecular vibrations.

TWISTED-AXIAL XY,Z,W MODEL

The considered SOF₄-type molecular model is shown in Fig. 2, which explains the applied valence coordinates. In order to avoid redundants in an easy way the γ and δ type bendings are not used individually when constructing the symmetry coordinates. New types were introduced as

$$\xi = \frac{1}{2}(\gamma_1 - \gamma_2), \qquad \eta = \frac{1}{2}(\delta_1 - \delta_2)$$

A complete set of symmetry coordinates without redundants is specified in the following.

$$\begin{split} S_1(A_1) &= 2^{-\frac{1}{2}}(r_1 + r_2) \\ S_2(A_1) &= 2^{-\frac{1}{2}}(d_1 + d_2) \\ S_3(A_1) &= t \\ S_4(A_1) &= R\alpha \\ S_5(A_1) &= \frac{1}{2}(RD)^{\frac{1}{2}}(\beta_{11} + \beta_{12} + \beta_{21} + \beta_{22}) \\ S(A_2) &= \frac{1}{2}(RD)^{\frac{1}{2}}(\beta_{11} - \beta_{12} - \beta_{21} + \beta_{22}) \\ S_1(B_1) &= 2^{-\frac{1}{2}}(d_1 - d_2) \\ S_2(B_1) &= \frac{1}{2}(RD)^{\frac{1}{2}}(\beta_{11} + \beta_{12} - \beta_{21} - \beta_{22}) \\ S_3(B_1) &= (DT)^{\frac{1}{2}}\eta \\ S_1(B_2) &= 2^{-\frac{1}{2}}(RD)^{\frac{1}{2}}(\beta_{11} - \beta_{12} + \beta_{21} - \beta_{22}) \\ S_2(B_2) &= \frac{1}{2}(RD)^{\frac{1}{2}}(\beta_{11} - \beta_{12} + \beta_{21} - \beta_{22}) \\ S_3(B_2) &= (RT)^{\frac{1}{2}}\xi \end{split}$$

TWISTED XY, (UV), MODEL

The considered model (see Fig. 3) is a probable structure of SO₂(OH)₂. The following set of symmetry coordinates has been constructed on the basis of the valence coordinates explained in Fig. 3.

$$\begin{split} S_1(A_1) &= 2^{-\gamma_2}(r_1 + r_2) \\ S_2(A_1) &= 2^{-\gamma_2}(t_1 + t_2) \\ S_3(A_1) &= R\alpha \\ S_4(A_1) &= \frac{1}{2}(RT)^{\gamma_2}(\beta_{11} + \beta_{12} + \beta_{21} + \beta_{22}) \\ S_5(A_1) &= 2^{-\gamma_2}(s_1 + s_2) \\ S_6(A_1) &= (ST/2)^{\gamma_2}(\gamma_1 + \gamma_2) \\ S_1(A_2) &= \frac{1}{2}(RT)^{\gamma_2}(\beta_{11} - \beta_{12} - \beta_{21} + \beta_{22}) \\ S_2(A_2) &= (ST/2)^{\gamma_2}(\tau_1 + \tau_2) \\ S_1(B_1) &= 2^{-\gamma_2}(t_1 - t_2) \\ S_2(B_1) &= \frac{1}{2}(RT)^{\gamma_2}(\beta_{11} + \beta_{12} - \beta_{21} - \beta_{22}) \\ S_3(B_1) &= 2^{-\gamma_2}(s_1 - s_2) \\ S_4(B_1) &= (ST/2)^{\gamma_2}(\gamma_1 - \gamma_2) \\ S_1(B_2) &= 2^{-\gamma_2}(r_1 - r_2) \\ S_2(B_2) &= \frac{1}{2}(RT)^{\gamma_2}(\beta_{11} - \beta_{12} + \beta_{21} - \beta_{22}) \\ S_3(B_2) &= (ST/2)^{\gamma_2}(\tau_1 - \tau_2) \end{split}$$

Acta Chem. Scand. 24 (1970) No. 5

OTHER Can MODELS, AND MOLECULES CONTAINING SULPHUR

S. J. CYVIN

In forthcoming papers 25,26 of this series a treatment of further molecular models with C_{2v} symmetry is scheduled.

(xiv) Dimethyl ether, acetone, propane and dimethyl ketene types. (xvi) cis-X₂Y₄, planar cis-X₂Y₂Z₂, planar XY₂WZ₂, twisted XY₂WZ₂, planar XY₂ZUV with linear XZUV chain.

The propane-type $(YU_2V)_2XZ_2$ model ²⁵ is also applicable to the $(CH_3)_2SO_2$ molecule, which has been studied spectroscopically.24 The same work 24 contains a study of CH₃SO₂F and CH₃SO₂Cl, which are believed to have a C, structure. It is intended to include these molecules in further spectroscopic and electron-diffraction investigations 13-16 of molecules containing sulphur.

REFERENCES

- 1. Cyvin, S. J., Brunvoll, J., Cyvin, B. N., Elvebredd, I. and Hagen, G. Mol. Phys. 14 (1968) 43.
- Cyvin, S. J., Cyvin, B. N., Elvebredd, I., Hagen, G. and Brunvoll, J. To be published.
 Cyvin, B. N., Cyvin, S. J., Hagen, G., Elvebredd, I. and Brunvoll, J. Z. Naturforsch.

24a (1969) 643.

- 4. Cyvin, S. J., Elvebredd, I., Brunvoll, J. and Hagen, G. Acta Chem. Scand. 22 (1968) 1491.
- Vizi, B. and Cyvin, S. J. Acta Chem. Scand. 22 (1968) 2012.
 Hagen, G. and Cyvin, S. J. J. Phys. Chem. 72 (1968) 1451.
 Elvebredd, I. and Cyvin, S. J. J. Mol. Structure 2 (1968) 321.
- 8. Vizi, B. and Cyvin, S. J. Acta Chim. Hung. 59 (1969) 91.

- 9. Brunvoll, J. and Cyvin, S. J. J. Mol. Structure 3 (1969) 155.
 10. Brunvoll, J. and Cyvin, S. J. To be published.
 11. Cyvin, B. N., Cyvin, S. J. and Müller, A. Acta Chem. Scand. 23 (1969) 1352.
 12. Cyvin, B. N., Cyvin, S. J. and Stølevik, B. Acta Chem. Scand. 22 (1968) 3034.
- 13. Hargittai, I. Acta Chim. Hung. 57 (1968) 403. 14. Hargittai, I. Acta Chim. Hung. 60 (1969) 231.

- Hargittai, I. Acta Chim. Hung. 60 (1909) 251.
 Hargittai, I. and Cyvin, S. J. Acta Chim. Hung. 61 (1969) 51.
 Cyvin, S. J. and Hargittai, I. Acta Chim. Hung. 61 (1969) 159.
 Kimura, K. and Bauer, S. H. J. Chem. Phys. 39 (1963) 3172.
 Levin, I. W. and Berney, Ch. V. J. Chem. Phys. 44 (1966) 2557.
 Cyvin, S. J. Acta Chem. Scand. 23 (1969) 576.

- 20. Hencher, J. L., Cruickshank, D. W. J. and Bauer, S. H. J. Chem. Phys. 48 (1968)
- Gillespie, R. J. and Robinson, E. A. Can. J. Chem. 40 (1962) 644.
 Chackalackal, S. M. and Stafford, F. E. J. Am. Chem. Soc. 88 (1966) 4815.
 Birchall, T. and Gillespie, R. J. Spectrochim. Acta 22 (1966) 681.
- 24. Spoliti, M., Chackalackal, S. M. and Stafford, F. E. J. Am. Chem. Soc. 89 (1967) $1\bar{0}92.$
- 25. Vizi, B. and Cyvin, S. J. To be published.
- 26. Cyvin, S. J., Hagen, G. and Cyvin, B. N. To be published.

Received November 3, 1969.