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The importance of considering an empirical rate equation as an
estimate of the true steady-state rate equation is emphasized, and
statistical methods of general applicability are described which may
be used for estimation of the type of the rate equation as well as of
kinetic coefficients in the equation. The methods are illustrated by
determination of empirical rate equations for the ceruloplasmin
catalyzed oxidation of derivatives of p-phenylenediamine. The diag-
nostic value of empirical rate equations for discrimination between
reaction mechanisms of different degree is discussed.

Experimental determination of the steady-state rate equation, i.e. the
functional relationship between the steady-state reaction velocity and
concentrations of reactants in an enzyme reaction, is often a primary object of
enzyme kinetic studies. Such rate equations may partly be used in & descriptive
manner for characterization of the enzyme, and partly for elucidation of the
reaction mechanism.! The common method for determination of empirical rate
equations has been to postulate the type of equation to be fitted to the experi-
mental data by subjective decision based on, for instance, theoretical considera-
tions or graphical analysis of experimental results.2 The main interest has then
been centered to the problem of estimating kinetic coefficients for the chosen
type of equation, and during the last ten years the classical methods of graphical
analysis ® have been considerably improved by the introduction of more precise
and objective statistical methods for coefficient estimation.?:%5 The problem
of making an adequate choice of the type of the postulated rate equation, which
is extremely important for the interpretation of experimental results with
respect to the reaction mechanism, does not appear to have been equally well
investigated.

The present paper describes statistical methods and tests which may be
used in order to make an objective choice of a proper type of rate equation.
The question whether an adequately estimated rate equation always can be
assumed to be identical with the theoretical rate equation for the actual
mechanism will also be discussed.
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THEORETICAL

Suppose that we want to determine an empirical steady-state rate equation
with respect to a reactant R (substrate, product, or modifier) using =
independent paired observations v, and [R],,i=1, ... ,n. Reactant concentra-
tions are considered as being accurately known, while steady-state reaction
velocities v; are assumed to be normally distributed with a constant variance.

As was pointed out in the preceding paper, almost all enzyme systems
conform to a rate equation of the following general type

S« [RF
_ M)
1+ 3 fIRY

where d defines the degree of the rate equation, and where the kinetic

coefficients o, and B, are independent of [R]. Unless contradictory information

is available, a rate equation of this general type should be fitted to the

experimental observations. This can be done by statistical standard methods

for any value of d. The method of iterative regression analysis ¢ may be used

gx the general case, and its application to eqn. (1) will be briefly described
ere.

Let «,* and B,* denote preliminary estimates of the kinetic coefficients.
These estimates can be improved by addition of correction terms 4«,* and:
4B,* obtained as regression coefficients on dstermination of the multilinear
regression through the origin of »—v* on 2d+1 variables defined by the
regression equation

d
v—v*= 3 Ao*
k=0 5

*

v* is obtained by substituting «,* and g,* for «, and /3,, in eqn. (1). The
improved estimates may then be used for a second determination of correction
terms, and this process is iterated until all correction terms become arbitrarily
small. The final self-consistent set of coefficients represents an unbiased
estimate of the different «, and g, in eqn. (1). The corresponding standard
deviations s(«,) and s(8,), as well as the residual variance s, can also be
computed by the above method; the mathematical details of the method are
described in statistical literature 67 and will not be treated here.

Clearly there is no point in using a regression equation on 2d + 1 variables
unless it gives a significantly better fit than a regression equation on a subset
of these variables. A main problem in determinations of empirical rate
equations will, therefore, be to estimate (not to postulate) the maximum value
of d required for a proper fit of eqn. (1) to the experimental observations.
Such an estimate of the appropriate degree can be made by fitting eqn. (1) for
d=1 and d=2 by the above iterative method. The corresponding residual
variance s,? and s,* are computed and used to calculate the quotlent on the
left hand side in eqn. (3):

(n—3)8,2— (n—5)s,?
28,2

=F(2,n—5) (3)
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EMPIRICAL RATE EQUATIONS 1277

According to the likelihood ratio theory 8 this quotient becomes approximately
F-distributed under the null hypothesis «, = f,=0 with the degrees of freedom
indicated within brackets on the right hand side in eqn. (3). The null hypothesis
(which is equivalent to the hypothesis d=1) may consequently be tested by
eqn. (3) at any chosen level of significance. If the hypothesis is rejected eqn.
(1) must be fitted for d= 3, and the null hypothesis «y= ;=0 (d=2) be tested
using

(n—5)s,® — (n— T)sg?

28,2

=F(@2n-1) )

If also this hypothesis is rejected the procedure can be analogously repeated
until the appropriate value of d has been established. It may be observed,
however, that only first and second degree empirical rate equations hitherto
have been described in the literature, and it will probably rarely happen that
both of the hypotheses d=1 and d =2 are rejected.

When the degree of the empirical rate equation has been properly estimated,
one should proceed by testing the significance of the corresponding kinetic
coefficients; in some cases the polynomial in the numerator in eqn. (1) may
be of a lower degree than the polynomial in the denominator («x,=0) and/or
lack the constant term (x,=0). According to the theory of the iterative
regression method 67 the quotient o,/s(«,) becomes approximately t-distributed
with n—2d—1 degrees of freedom under the null hypothesis «,=0, and the
significance of any o, can be tested using

Tk —t(n—2d—1) (5)

If the hypothesis is accepted for a particular coefficient «,, a new regression
equation should be calculated under the restriction «,=0 and with omission
of the corresponding variable Jv/d«,, before one proceeds by testing the
significance of other coefficients. It must then also be observed that the degrees
of freedom for test function (5) increase by one unit for each eliminated
coefficient. The significance of the coefficients f, can be analogously tested.

It frequently happens that one has theoretical and/or experimental
evidence that, whatever the degree of the mechanism may be, v=0 when
[R]=0; this is, for example, the case when R denotes an obligatory substrate.!
In such a situation it may be advantageous to start by fitting eqn. (1) for
d=1 in order to obtain an estimate of «, and to test the significance of «,
before estimating the degree of the rate equation. If the hypothesis ay=0 is
accepted all further calculations should be carried out under the restriction
uo=0 and with omission of the corresponding variable. This means that the
test functions (3) and (4) must be changed to (6) and (7), respectively.

(n—2)8,%—(n—4)s,?
28,2

=F(2,n—4) (6)

(n—4)8,? — (n— 6)s5®
28,2

=F(2,n—6) (7)
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The objective of many kinetic investigations is to determine a rate equation
with respect to two (or more) reactants R, and R, e.g. a substrate and an
inhibitor. Such a combined rate equation can also be estimated by the above
methods, using a series of experimental observations of the reaction velocity
v as a function of R, at different constant levels of the second reactant R,.
Determination of the empirical rate eqn. (1) with respect to R, at each con-
centration of R,, gives the different kinetic coefficients «, and B, as functions
of [R,]. According to the theory of Wong and Hanes ! each «, (8,) is a quotient
between two polynomials in [R,]. Consequently, the functional dependence
of «, (B;) on [R,] is exactly analogous to the dependence of v on [R,] expressed
by eqn. (1), and can be estimated in the same manner. '

The latter technique can best be illustrated by means of a simple example.
The combined rate eqn. (8) can be applied to all inhibition mechanisms which
are of the first degree with respect to both the substrate (R,=S) and the

inhibitor (Ry=1):
_ %0+ %10[S] +ag[1]+2,,[S][]

T+ BuolS+ foulT1+ FSTT] ®
Re-writing this equation in a form corresponding to eqn. (1) we get
_ %ot ay[S] 9)
T 1+ 84(8]
where -
%go + &,
o= 1°o+ﬁ1:h] (10)
%0+ 2q,[1]
=35t a
_ Bio+ B[]
P1= T Bl )

showing that the functional dependence of «,, a; or 8, on [I] is of the general
type indicated in eqn. (1).

After having established (by the above F-tests) that eqn. (9) repre-
sents the empirical rate equation with respect to S, and that no second
degree terms are significant in the relationships between «,, o, or #, and [I],
one may proceed by testing the significance of each a; and f;, in eqns. (10)—
(12). Non-significant «;, and f;, are eliminated in eqn. (8), which then repre-
sents the estimated combined rate equation and hence gives information on
the inhibition mechanism. The above technique can readily be generalized
and is applicable to combined rate equations with respect to any number of
reactants.

The statistical methods described above are based upon the assumption
that the variance of the experimental reaction velocities is constant. If this
is not the case all fits have to be properly weighted in order to obtain unbiased
estimates and to make the tests valid. Methods of weighting the observations
in statistical analysis of enzyme kinetic data have been described and dis-
cussed by Cleland.?
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RESULTS

The practical application of the above statistical methods will be illustrated
by two representative examples from our current studies on the ceruloplasmin
catalyzed oxidation of mixtures of dimethyl-p-phenylenediamine (DPD) and
Wurster’s red (DPD?); a complete description of the latter investigations
will be given elsewhere. Table 1A shows experimental determinations of the
enzymatic reaction rate v as a function of the concentration of DPD?* in the
absence of DPD. Reciprocal plots of the data (see Fig. 1) indicated that the
empirical rate equation was of the first degree with respect to R=[DPD*], and
eqn. (13) was fitted to the observations using the corresponding regression eqn.
(14):

Table 1. Enzymatic steady-state reaction rate » as a function of: (A); [R]=[DPD*] at

[DPD]=0; (B), [R]=[DPD] at [DPD*]=10.30. One concentration unit equals 9.5 x 10~% M.

One rate unit equals 1.69 moles substrate oxidized per minute per mole enzyme.

Columns marked “final fit”’ give reaction rates as being calculated from the estimated
rate equations.

Experiment A Experiment B

[R] v final fit [R] v final fit
0.10 3.45 3.26 0.58 - 8.20 8.41
0.15 4.47 4.56 1.46 9.95 9.60
0.20 5.67 5.69 2.34 10.60 10.64
0.25 6.60 6.68 3.22 11.70 | 11.55
0.30 7.54 7.57 4.10 - 12.00 12.37
0.35 8.36 8.36 8.50 15.65 15.42
0.40 9.06 9.06 17.3 18.60 18.77
0.45 9.75 9.70 26.1 20.50 20.58
0.50 10.41 10.28 34.7 21.90 21.69
0.55 10.70 10.81 43.7 22.40 22.48
0.60 11.31 11.30

!

03 F A

0.2 - /

o’/ +
01 yod ..
Fig. 1. Reciprocal plot for the observations ] 1 |

given in Table 1 (A, O; B,+). 0 5 10 15 [R]
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_ 2y +oy[R]

1+ Ai[R]
oo* + o ¥[R] _ 1 L o [R]”__ _ ao*[R]+ o ¥[R]?
TOFAART A Ty A T pmy AR T aRIe

The preliminary estimates («o*, a,*, §,*) required for the iterative regression
method were obtained by putting «,*=0 and calculating «,* and g,* from
the slope and the intercept of the straight line indicated in Fig. 1; this line
was assumed to be described by (c¢f. eqn. (13))

1_p* 11
v a* ' o* [R]
The calculated regression coefficients (xy*, «;*, B,*) were then used for
correction of the preliminary estimates, and the regression analysis was

iterated until a self-consistent set of coefficient had been obtained at the
desired level of precision (see Table 2).

(15)

Table 2. Tterative fit of eqn. (13) to the obseryations given in Table 1A.

Coefficient o, oy B
Preliminary 0 32 1.356
First correction term +0.3320 +3.19 +0.141
First corrected estimate 0.3320 35.19 1.491
Second correction term +0.0031 —0.03 —0.008
Second corrected estima,t?e 0.3351 35.16 1.483
Third correction term —0.0004 0.00 +0.001
Third corrected estimate 0.3347 35.16 1.484
Fourth correction term 0.0000 0.00 0.000
Self-consistent estimate 0.3347 35.16 1.484
Standard deviation 0.2238 2.164 0.169

Calculation of test function (5) for the values of ¢, and s(«,) given in Table
2 showed that t(8)=0.3347/0.2238 = 1.50. Consequently, the hypothesis oy=0
cannot be rejected even at the 5 9%, level of significance (for rejection t(8)
must exceed 1.86), and the iterative regression analysis was repeated using
the rate equation
«[R]

v 16
Ey AT o
which corresponds to the regression equation
o *[R] «_ R] «*[R]
S W) S e SR, 3 e M S 17
T 1 BN T A1 R T 2 an
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The self-consistent values of «; and £, obtained on fitting eqn. (13) (see Table

2) were taken as preliminary estimates for the fit of eqn. (16), and the results
of this fit are given in Table 3. It can be seen from the t-tests that both «,

Table 3. Tterative fit of eqn. (16) to the observations listed in Table 1A.

Coefficient oy B
Preliminary estimate 35.16 1.484
Self-consistent estimate 38.16 1.709
Standard deviation 0.663 0.070
t(9) in test function (5) 57.5 24.4
Level of singificance <0.0005 <0.0005
Residual variance 0.009197

and B, in eqn. (16) are most significant, and the rate equation cannot be
further simplified.

In order to test the degree of the empirical rate equation, the self-consistent
estimates in Table 3 were taken as preliminary estimates «,* and f,* for
the iterative fit of eqn. (18) to the observations; «,* and f,* were both put
equal to zero.

— oy [R] + ap[R]?
1+ B[R]+ By[RT

The residual variance was now found to be 0.0071, which has to be compared
with the value of 0.0092 obtained on fitting eqn. (16). Test function (6) thus
becomes (n=11) F(2,7)=(9-0.0092—7-0.0071)/2-0.0071 =2.34, showing that
the fit cannot be significantly improved by using the second degree rate eqn.
(18); at the 5 9 level F(2,7) must exceed 4.74 for significance.

The empirical rate equation, as estimated by the above methods, is thus
given by eqn. (16) with the coefficient estimates listed in Table 3. The value
(0.0092) of the residual variance may be taken as a measure of the precision of
the fit, values of the reaction rate calculated from the empirical rate equation
are given in Table 1A.

Table 1B shows experimental determinations of the enzymatic reaction
velocity as a function of R =[DPD] at a constant concentration of the second
substrate DPD*. The results obtained on fitting eqn. (13) to the observations
are listed in Table 4, which also gives t-tests of the kinetic coefficients.
In this case the hypothesis «, = 0 was rejected on the 0.05 9, level of significance
and eqn. (19) was fitted to the data.

o g+ o, [R] + o [R]? (19)

L+ B[R]+ B[R]
Comparison of the residual variances obtained on fitting eqns. (13) and (19),
respectively, using test function (3) gave F(2,6)=2.39. Consequently, the
null hypothesis d=1 was accepted (rejection at the 5 9%, level of significance

(18)
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requires that F(2,6) exceeds 5.14), and in the final t-tests of «, and B, (Table

4) both coefficients were found to be significant on the 0.05 %, level. The
empirical rate equation is thus given by eqn. (13) with the coefficient estimates

Table 4. Iterative fit of eqn. (13) to the observations listed in Table 1B.

Coefficient oy oy B
Preliminary 7 2 0
Self-consistent estimate 7.539 2.204 0.08285
Standard deviation 0.2503 0.1751 0.008054
t(8) in test function (5) 30.1 12.6 10.3
Level of significance <0.0005 <0.0005 <0.0005
Residual variance 0.06764

indicated in Table 4. Fitted values of the reaction rate calculated from the
empirical equation are given in Table 1B.

The above experimental material may be also used as an illustration of
the technique used for determination of combined rate equations. Experimental
estimation of the rate equation with respect to R =[DPD] was carried out as
. described for the observations listed in Table 1B at several constant levels
of [DPD*], and thus yielded a set of «y-values at corresponding concentrations
of DPD*, The observations given in Table 1A represent this set of paired
values of v=«, and R=[DPD*], and were used to determine the functional
dependence of ay on [DPD*]. The dependence of the remaining coefficients on
[DPD*] may be analogously determined, in order to obtain the complete
combined rate equation.

DISCUSSION

The great advantage of statistical methods for coefficient evaluation
over the commonly used graphical methods has been emphasized in several
reports.2:45 Statistical analysis eliminates subjective influence on the
results and yields better estimates of kinetic coefficients as well as a measure
of the precision of these estimates in the form of their standard deviation.
Furthermore, a large number of kinetic investigations must be expected to give
results which cannot be evaluated by any graphical methods. Such results are
frequently encountered in the study of two-substrate mechanisms, where rate
equations generally are of a higher degree than unity.! The present investigation
also gives an illustrative example of observations (Table 1B, Fig. 1) which
cannot be reliably evaluated graphically even though they conform to a rate
equation of the first degree.

The iterative regression method outlined in the theoretical section can
be used for estimation of kinetic coefficients in any postulated type of rate
equation. A similar method for coefficient evaluation in non-linear rate
equations has recently been described by Cleland,? and the main contribution

Acta Chem. Scand. 24 (1970) No, 4
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of the present paper is to introduce the concept of and give methods for
estimation of not only kinetic coefficients but also the degree of the rate
equation. The great importance of such methods is evident in view of the
results obtained by Wong and Hanes, who showed that steady-state rate
equations for enzyme mechanisms adhere to the general form shown in eqn. (1),
but differ primarily in their degree with respect to the reactants.! The diagnostic
value of direct correlations between rate behaviour and mechanism will,
consequently, be dependent upon the possibility to distinguish between rate
equations of different degree, and Wong and Hanes anticipated that
unequivocal delineation of such diagnostic features of rate behaviour might
prove to be difficult and demand refinement of procedures for processing
the experimental data.

Estimates of the degree of a rate equation of the type indicated in eqn. (1)
may be obtained in several different ways, but the method described in the
theoretical section (which is based on analysis of variance combined to t-tests
of individual coefficients) is of general applicability and hence easily pro-
grammed for adigital computer. We have, further, found this method to be more
rapid and easy to handle than other methods tested. For example, an estima-
tion of the degree can be based exclusively on test function (5), which may be
considered as a special case of the F-tests required for analysis of variance.
Eqn. (1) should in that case be fitted to the experimental observations for a
value of d which deliberately has been chosen at least one unit too large.
The significance of the coefficients may then be tested using eqn. (5) for one
coefficient at the time (in the order o, 8,, 2,4, B4—q, = - *) until the appropriate
degree has been established by elimination of 1ns1gmﬁcant coefficients. The
latter method requires one complete recalculation of the regression equation
for each eliminated coefficient, and will usually be less rapid than the method
based on F-tests where two coefficients may be eliminated for each recalcula-
tion. Furthermore, it appears that the preliminary estimates «,* and g, *
must be fairly precise when the number of variables in the regression eqn. (2)
is large. For this reason, it is advantageous to start by fitting an equation of
the lowest reasonable degree, and to use the estimates thus obtained for the
fit of higher degree equations.

The statistical methods described in the present paper require a large
number of calculations and should preferably be programmed for a digital
computer. Such programs are routinely used in our laboratories, and Fig. 2
shows the operation scheme for a standard program which carries out all
calculations required for a complete determination of the empirical rate
equation with respect to one reactant. This program was used for the experi-
mental data given in Tables 1A and 1B; the operation route followed was
Al1—-A3—-R6 and R1—A2-—R6, respectively. The program should not be
used when the experimental observations exhibit features (e.g. maximum or
minimum values in the dependence of v on [R]) which clearly can be ascribed
to the presence of higher degree terms in the rate equation. In such cases it
is advantageous to start by fitting an equation of the second degree.

Application of the above statistical methods and test functions successfully
establishes the significance of the empirical rate equation. The power of
the tests can, evidently, be increased by increasing the number and the
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INPUT
Experimental observations S Fit 1° eqn.
Desired level of significance 7 Test ay=0
Preliminary estimates ag*, fi*
R1 Al
\ 4 Y
Fit 2° eqn. Ii’t l: equ. op=10
Test d— 1 Fit 2° eqn.
. Test d=1
R2 A2 A3 R3
Y Y
Fit 3° eqn. Fit 3° eqn. ;=0
Test d=2 Test d=2
\L R4 l A4 l A5 iRs
Y \ 4
m: 7 5 3 2 4 6 m—1
1 ] | | ] | /1

Test the significance of each of m remaining
coefficients: ap=0 or fr=0

Rejected for all & I Accepted for any k

R6 A6
J Vv
oUTPUT .. .

R O i Eliminate the non-significant coeffi-
I:]stxmatres of remaining coefficients cient and recalculate other coefficient
Standard deviations, residual variance estimates
Other results of interest

Fig. 2. Operation scheme for a computer program for determination of empirical rate
equations with respect to one reactant. A (R) stands for the route followed when the
null hypothesis tested is accepted (rejected).

precision of the experimental observations, but is also dependent upon factors
which cannot be subjected to experimental variation. This means that the
empirical rate equation, although being adequately estimated, must not
necessarily be identical with (it may be simpler than) the theoretical steady-
state equation for the investigated mechanism. An important consequence
of this fact is that an empirical rate equation of a certain degree d cannot,
in general, be used for discrimination between possible reaction mechanisms
for which the degree with respect to the actual reactant equals or is higher
than d.

The latter situation may, for example, be encountered in the classical
enzyme kinetic studies where initial reaction velocities are measured at
various initial substrate concentration in absence of products. Such experiments
have frequently been observed to yield apparently linear reciprocal rate plots
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and experimental data have, consequently, been fitted to a Michaelis-Menten
type of equation which is an adequate treatment for descriptive purposes.
For the purpose of elucidating the reaction mechanism, however, it may be
completely misleading to assume that the empirical rate equation is identical
with the theoretical one, and hence that the reaction mechanism is of the
first degree with respect to the actual substrate. The number and/or the
precision of the experimental observations may have been insufficiently large
for establishing the presence of higher degree terms in the rate equation,
and the mere exhibition of linear reciprocal rate plots can never be taken
as evidence for elimination of possible higher degree mechanisms. The latter
conclusion is further substantiated by the results obtained in the preceding
paper, which showed that reciprocal rate equations become asymptotically
linear for any higher degree mechanism at low reactant concentrations,
and hence easily can be mistaken for first degree equations.

On the other hand, when the significance of higher degree terms in an
empirical rate equation has been established, all mechanisms of a lower degree
may be definitely excluded at the corresponding level of significance. Taking
this fact into consideration, and observing that enzymatic reaction mechanisms
in general must be expected to be of a higher degree than unity,! it becomes
evident that experiments always should be planned with proper regard to the
possibility of detecting higher degree terms (e.g. by application of the above
F-tests), also in cases where experimental data can be fairly well fitted to
a rate equation of the Michaelis-Menten type.

As was mentioned in the introduetion, the common approach in steady-
state kinetic investigations has been to postulate a certain rate equation
(or to postulate the mechanism leading to this equation), the point of the
investigation being to estimate the corresponding kinetic coefficients. For
the purpose of establishing a mechanism, however, the question of coefficient
evaluation is of minor interest, the major problem being to establish the
degree of the theoretical rate equation. This problem is not easily solved,
and generally requires a considerable amount of information (a large number
of experimental observations of high precision). The method described in
the present investigation allows a more cautious approach to be made. The
method is not assumed to give a correct determination of the theoretical
rate equation, but the best estimate of the true equation will be obtained
for any given amount of information. This approach is satisfactory both
for descriptive purposes and for the purpose of elucidating the reaction
mechanism. The significance of the estimated rate equation is directly given
by the tests applicated, and the levels of significance at which other types
of rate equations can be excluded can be obtained by calculation of the power
of the tests.
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