that there is no deviation from eqn. 5 even at this relatively high concentration.

The financial support of the Swedish Natural Science Research Council (NFR) is gratefully acknowledged. Our sincere thanks are due to Ewert Ingemansson for valuable help and generous support both economically and otherwise when assembling the automatic titration equipment. Derek Lewis kindly revised the English of the text.

2. Biedermann, G. and Wallin, T. To be published.

Received January 15, 1970.

Chemical Studies on Lichens

28.* The Pigments of Some Folicolous Lichens

JOHAN SANTESSON

Organic Department, Institute of Chemistry, University of Uppsala, Box 353, S-751 21 Uppsala 1, Sweden

Nine species of obligately folicolous lichens have been studied with regard to their content of coloured secondary metabolic products. Three anthraquinones, three pulvinic acid derivatives, three chlorinated xanthones, and usnic acid were identified by lichen mass spectrometry and thin layer co-chromatography.

The secondary metabolic products of obligately folicolous lichens (i.e. lichens only occurring on living leaves) are virtually unknown. Only one substantiated report on their constituents has appeared in the literature: the occurrence of 2,5,7-trichlorornorlichexanthone in Sporopodium phyllocharis (Mont.) Mass. and of 3-O-methyl-2,5,7-trichloronorlichexanthone in S. phyllocharis var. flavescens R. Sant. 2

By means of lichen mass spectrometry (LMS) and instant thin layer co-chromatography (ITLC) the pigments of nine folicolous lichens have been studied. All investigated species belong to the family Lecideaceae.

The impossibility of obtaining more than a few milligrammes of lichen material (in advantageous cases!) has precluded isolation of the substances present and has

\[\text{R} \quad \text{R}’ \]

\[\begin{array}{c}
\text{I: } \text{H} \quad \text{H} \\
\text{II: } \text{H} \quad \text{Cl} \\
\text{III: } \text{CH}_3 \quad \text{Cl} \\
\text{IV: } \text{CH}_3 \quad \text{H} \\
\end{array} \]

made it necessary to rely upon LMS and ITLC for the identifications. Both methods have been used in all cases.

Byssoloma tricholomum (Mont.) Zahlbr. em. R. Sant. was found to contain the closely related anthraquinones emodin (I), 7-chloroemodin (II), and fragilin (III). I—III are rather common within the family Teloschistaceae*5,6* and scattered occurrences in lichens belonging to other families have also been reported.*3—*4 It is significant that no traces of peritinin (IV) could be found in *B. tricholomum*. A joint occurrence of I—IV has never been reported from lichens outside Teloschistaceae.

![Structural diagrams](image)

In *L. neutonium* (Henriques) R. Sant., the presence of usnic acid was demonstrated. Usnic acid is very common in lichens.

Finally, *Tapellaria epiphylla* (Müll. Arg.) R. Sant. was shown to contain the chlorinated xanthones arthothelin (IX) and thuringione (X). IX is fairly common in lichens,*6* while X has been found only in one *Leccanora* sp.,*6* one *Buellia* sp.,*6* and one *Lecidea* sp.*10*

Experimental. The lichen mass spectra were recorded according to Ref. 3, using an LKB 9000 gas chromatograph—mass spectrometer, equipped with a direct inlet system. TLC identifications were made by co-chromatography with authentic samples on Eastman “Chromagram” plates (6060, silica gel), using solvent systems previously described.*4,11,12*

Acknowledgements. I am indebted to Dr. Rolf Santesson, Institute of Systematic Botany, Uppsala, for the supply of identified lichen material and for valuable advice on lichenological matters. The costs of the investigation were defrayed by a grant from the Swedish Natural Science Research Council to Dr. Gerd Bendz at this Institute.

The Single and Double Bonds between sp²-Hybridized Carbon Atoms, as Studied by the Gas Electron Diffraction Method

VI. The Molecular Structure of Acrolein

MARIT TRÆTTEBERG

Department of Chemistry, University of Trondheim, NLHT, Trondheim, Norway

The molecular structure of acrolein is a natural choice for inclusion in the present research series. The molecular structure of this molecule was studied by microwave spectroscopy in 1966 and more recently by electron diffraction. When the latter results appeared, however, the experimental part of the investigation reported here was already carried out, and it was decided to continue the structure study. Even if the structural results may be of somewhat reduced interest, it might be worth while to compare results obtained by different electron diffraction laboratories.

The experimental data for the electron diffraction study of acrolein were recorded at two camera distances, approximately 48 cm and 19 cm. The data were combined to give an experimental molecular intensity function (I(s)-function) in the s-range 1.25—45.0 Å⁻¹. The molecular structure was studied by least squares refinements of the experimental molecular intensity function and by following the progress on radial distribution functions. In the structure analysis all C=−C—H angles were assumed to be equal and the CH bond distance in the aldehyde group was assumed to be 0.02 Å larger than the other CH bond distances.

Table 1 lists the final results for the internuclear distances and mean amplitudes of vibrations for acrolein. The distances are arranged in order of increasing internuclear distance so that it will be easy to identify them in Figs. 3 and 4 which show the experimental and theoretical radial distribution functions when two different damping constants are applied. The solid bars represent relative contributions from the internuclear distances listed in Table 1.