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Using the Coulson, Longuet-Higgins integral formula for the
calculation of charge densities of conjugated systems, it is shown
that the size of the =s-electron charge on boron varies very little
between boron atoms of different borate structures. The variations
occurring are dependent upon whether the oxygen atoms surrounding
the boron atom considered are singly or doubly connected to the
conjugated system. It is in a similar way shown that the bond orders
of the boron-oxygen bonds are dependent upon the coordination
of the oxygen atom to the conjugated system.

A very large constancy of the quadrupole coupling constant of three-
coordinated boron in the borate structures has been observed.!»> As the
quadrupole coupling constant is dependent upon the electron charge density
in the environment of the boron nuclei, this condition should be regarded
as showing a great similarity of the bonding between three-coordinated
boron and surrounding oxygen atoms. A significant difference exists only
between compounds containing BO,-groups of three-fold symmetry on the
one side and compounds of groups which are not quite in perfect symmetry
on the other. The 10 9, lower value of the quadrupole coupling constant
(eq@) of the second group of compounds should probably be attributed to
changes of the electron charges of the boron valence orbitals which accompany
the distortion. Both groups contain namely compounds with greatly varying
numbers of cations and BO,-groups, for which reason it could be concluded
that these surrounding atom groups do not influence the value of eg@
appreciably.

It could possibly be assumed that the boron oxygen bonds of the second
group of borates are less ideal than those of the first group. In the compounds
of the second group large variations of the OBO and BOB valence angles
are observed, and occurring conjugated groups are appreciably distorted
from planarity. Whereas the effects of such distortions upon the o-electrons
are not so easily predicted, it could be concluded that the main effect upon
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the n-electron charge distribution should be traced back to a reduction of
the m-electron resonance integrals. The o-electrons are responsible for the
major contribution to the quadrupole coupling constant and the n-electrons
make a negative contribution to this constant. It could then be concluded
that the observed variation in eg@) between the two groups could not be
assigned to changes of the m-electron charges caused by the reduction of
the s-electron resonance integrals. It could for this reason be assumed that
the observed effect is due to changes of the g-electron densities, and that
the variations of the m-electron charges only slightly counteract the observed
effect. It has, however, also to be ascertained that the m-electron charge on
boron does not vary appreciably between idealized planar conjugated borate
groups. That this must be the case follows from the arguments given below,
and it is due to the fact that all conjugated systems under consideration
here are alternant, in a first order treatment, having all bonding orbitals
occupied and all non-bonding orbitals empty.

7z-ELECTRON CHARGE DENSITY ON BORON

A very convenient method for the treatment of large conjugated systems
has been set out by Coulson and Longuet-Higgins.? Total n-electronic energy,
charge densities and bond orders could here be calculated in one single step
without solving the secular determinant for the individual molecular orbitals.
The contributions from the different orbitals to the total charge density
on the r-th nucleus could, for example, be summed up in the form of an
integral of the type

1A
9= 1) A(¢)

—100

de (1)

4(e) is here the secular determinant expressed as a function of an argument
¢ representing the m-electronic orbital energy. 4,, is similarly the cofactor
of the r-th row and r-th column of the secular determinant. The zero of the
energy scale has here to be chosen in such a way that all occupied orbitals
obtain negative energies and the unoccupied orbitals positive energies.

We will make use of eqn. (1) to calculate the charge density on boron
in conjugated borate systems being built up of BO,-triangles sharing oxygen
atoms in the corners. The systems studied are then assumed to contain boron
atoms which all form m-orbital overlap to three nearest oxygen atoms, and
oxygen atoms either forming overlap to two nearest boron atoms or to only
one boron atom, when placed at the boundary of the conjugated system.
To determine the appropriate value of the zero of the energy scale for this
general conjugated system we develop the secular determinant according to
cofactors. The secular determinant could be expressed as a sum of determinants
of lower order, when developed according to a row associated with a boron
atom at the boundary of the system. This boron atom is bonded to at least
one oxygen atom, which is not further connected to the conjugated system,
and the secular determinant could therefore be written as

Acta Chem. Scand. 23 (1969) No. 6




CHARGE DENSITY ON BORON 2007

A(e) = [(zn—e)(xo—2&)— F214(0g" By) + flao—e)4(05BeO?) +
+ Blro—e) 4(05By0y%) (2)

when denoting the boron atom considered by B,, the singly connected oxygen
atom by Og!, and the two other oxygen atoms connected to the boron atom
by O4% and Og3. The determinant A (7- st) is here obtained from 4 by calculating
in a first step the cofactor associated with the row and column », and by
calculating from this latter determinant the cofactor associated with the
row s and the column ¢. The further assignment of indices to the atoms of
the conjugated group follows from Fig. 1. All oxygen and three-coordinated
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Fig. 1. Assignment of indices to the ™ 3/ 3\931/ 3
atoms of a representative non-ring forming ] ’
conjugated borate system. o2 Og',

boron atoms are here treated as equivalent and values «, and ay are assigned
to the Coulomb integrals of the oxygen and boron atoms, respectively. The
resonance integrals § between adjacent boron and oxygen atoms are further
assumed to be equal which means that all second order effects are here
neglected. The determinants of eqn. (2) could all be reduced to diagonal deter-

minants of a part of the conjugated system. 4(O,!-B,) simply represents a
system from which the atoms O4' and B, have been struck out. The non-

diagonal determinants 4(0,-B,0,%) could be developed into diagonal form by
a further development according to cofactors.t 4(0,'-B,04?) is, for example,
obtained as a sum of terms each containing one diagonal determinant obtained
by striking out from the total conjugated system atoms Bj, Oy O42 and all
atoms being placed along a continuous non-crossing chain connecting atoms
B, and O4%. For the alternant conjugated borate groups this is expressed as

A(0p1'By0g2) = (—1)r+s;/31(—1)u, [N— %‘1 —1, M— l—g—l -2] (3)

where the summation has to be taken over all such non-crossing lines. ! here
gives the number of bonds of each line and » and s the numbers associated
with atoms B, and Og?, 4[I, J] stands for a diagonal determinant, in which
I boron and J oxygen atoms remain, the total conjugated system being
assumed to contain N boron and M oxygen atoms.

It is easily shown for small conjugated systems of this type that the
secular determinant could be factorized to give one factor (ago—e)®—" and
one other factor which is a power expression in the determinant
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of an order equal to N. Making use of eqns. (2) and (3) it then follows from
similar arguments that the secular determinant could be factorized in a similar
way for all conjugated systems considered here. The factor (xg— &)~V gives
rise to M —N degenerate orbitals of energy o,. These orbitals are all non-
bonding with nodal planes through the sites of the boron atoms and the whole
electron charge concentrated on the oxygen atoms. The polynomial expression
has N negative roots, which is why the corresponding energy levels occur
in pairs evenly distributed around («,-+o3)/2. The set of N orbitals of energy
lower than (x,+a5)/2 are bonding and the other anti- -bonding. As the number
of m-electron pairs is equal to the number of oxygen atoms in the system,
all bonding and non-bonding orbitals are occupied, and we can, consequently,
choose the zero of the energy scale equal to (x,+«p)/2 in order that the
integral expression of eqn. (1) should sum up the charge densities of the
occupied orbitals. For the convenient calculation of the charge densities
we express the integral of eqn. (1) in the quotient (a¢o—ag)/2f=a, the size
of which quantity could be estimated from the electronegativity difference
of boron and oxygen to about 0.75. This substitution and the proper choice
of zero energy level is introduced by replacing oy/f by @, ag/f by —a, and
¢ by z=¢/f in eqn. (1).

For the calculation of the charge density the secular determinant is
developed in cofactors according to the row associated with the boron atom
considered. The quotient Agzg/4 is the obtained as

and g

dws _ a—z :
4 3 4(ByOy) (4)

and we could further develop
4(By0y') = —4(By-0Oy)) (5)
when restricting the treatment in a first step to systems not containing rings but

only linear and branched conjugated groups for which 4(ByO4'-0y'B;)=0.4
We could also write
A(Eo) = (“—Z)A(Eo’aoi)—A(Eo'aoi'ﬁi) i=123 (6)
which holds for any borate system, since here A(BOBO-OoiBi):-—A(E,-GOLE).
Agg/4 is then obtained as
4 1
BB _ — (7
l —
A(Eo'aoi']_gi) ]
4(By-0y')(a—2)

(@ +2)(@a—z) +

ive

11—
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All determinants in the quotients of this equation represent conjugated
systems, which could be derived from the system studied by striking out a
number of atoms. One more boron atom is here eliminated from the deter-
minant in the numerator than from the determinant in the denominator.
These expressions thus resemble Apz/4 and the development according to
cofactors could then be repeated in successive steps. For an infinite conjugated
system not containing rings Agp/4 could then be expressed as a continued
fraction from which charge densities could easily be calculated with
quite sufficient accuracy after a suitable truncation of the development.
The ratio of determinants of eqn. (6), for example, by developing in one
further step is obtained as

A(Eo’aoi'ﬁi) . - 1 (8)
A(By-0y')(a—2) 1
S 4By Oy BOJBy)
4(By-0¢'-B;-0)(@—2)
For the numerical integration the substitution z=iy is introduced. It
then follows that the expressions

4(B-0-B-0-B)
4(B-0-B-O)(a—2z)

do not exceed 1 within the whole interval of y, and that the largest value
appears for y=0. It is a reasonable approximation to neglect these quotients
compared to 1 at an earlier or later stage of the development according to
cofactors. Charge densities have been calculated for some small representative
systems (Fig. 2), which values could be used to approximate the densities
on boron in similar positions of larger systems. For the smallest values of
y (y<<2) the ratio of the determinants of eqn. (7) does make some contribution
to the integrand. As a considerable contribution to the integral arises from
larger values of y the effect is, however, not very drastic on the charge density
(Fig. 3). From the development of the integrand into a continued fraction
it could be seen that the charge density of these types of conjugated systems
could be estimated from a schedule that very much resembles the effect of
a near neighbour interaction. For a first estimate of the charge density of
three-coordinated boron in any conjugated system we can use the simple
integrand

4 (@ + 2)(@a—z) + 3

4sn a—z (9)

which expression gives the exact solution for the isolated BO4- group. When
employing this approximation we thus consider the effects of the z:-orbital
overlap to the three nearest oxygen atoms but neglect the effects of more
remote nuclei of the conjugated system.

The m-electron charge density on boron is reduced to some degree by
the enlargement of the conjugated system, the reduction being mainly
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Iig. 2. n-Electron charge density (¢g) at boron compared with the density of the isolated
BO;-group (¢g(BO;)) for some representative conjugated borate systems as listed in
Fig. 2 b. * marks the boron atom considered in the different groups.

dependent upon how many of the nearest oxygen neighbours are further
connected to the conjugated system. The size of these changes is reproduced
in Fig. 2 where the reduction of the charge density from the value found
for the isolated BO,-group is given for some conjugated systems. Whereas
the charge density is reduced by 2 to 3 9, by enlargement of the group in
such a way that one more oxygen atom becomes doubly connected to the
system, it will change only by 0.2 to 1.0 %, by an enlargement of the group
under conditions where the n-electron coordination of the three near neighbour
oxygens is not altered.

This simple way of calculating charge densities of large conjugated
systems, where the continued fraction of the integrand is truncated to
represent a smaller conjugated group containing only the nearest neighbours
of the studied atom, could be used only for systems having all bonding
orbitals occupied and the non-bonding empty. The proper choice of zero
of the energy scale implies that all expressions

(Bo 00)(a z)
in this case could be given as quantities between polynomials in a?+y? of
only positive coefficients, the order of the numerator being one unit smaller

than that of the denominator. It is then easily ensured that these ratios of
determinants are not large compared to 1. If, on the other hand, the zero
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of the energy scale is chosen in such a way that some of the bonding orbitals
are not included, or if some of the anti-bonding orbitals are included in the
summation of the charge densities of eqn. (1), the ratios of the determinants
are obtained as polynomials in a?, y?, and y. These expressions are then
generally not small compared to 1, and it is for this reason not possible to
truncate the continued fraction at any stage of the development in order
to obtain a simple approximation. The size of the charge density is in this
case dependent upon the extension of the conjugated system, and this
quantity will change appreciably between different conjugated systems even
for atoms with a similar environment of near neighbours.

For the treatment of general conjugated systems the non-diagonal
determinants 4(ByOy'-O,l B;) has also to be considered. The terms of the
denominator of eqn. (4) are then obtained as

1 4(B0¢"0,'By)

— éi%—;ﬂ (a—z) = A(%(]?(%' ?%?) (10)
0 1 4By 0By
A(BO.OOi)

The second term of the numerator of this eqn. is obtained by making use
of a development in accordance with eqn. (3). It then follows that this term
is obtained as a quotient between a polynomial in a®—22 of an order equal
to N —[(I—1)/2]—1 and a similar polynomial of order N—1, where I gives
the number of bonds in the shortest non-crossing line connecting B, and
B;. This term is consequently not large compared to 1, and it decreases
rapidly with enlargement of the conjugated ring. In the borate systems we
do not meet smaller than six membered rings which is why the order of the
numerator is always at least two units smaller than that of the denominator.
Specific calculations have been performed for two ring-forming systems as
shown in Fig. 2. It follows from these examples that the effect of these terms
are not quite negligible, but that they do not completely invalidate the
correlation schedule between charge density and structure appropriate for
non-ring forming groups.

BOND ORDER AND SECOND ORDER EFFECTS

Expressions of similar type could be derived for the bond order, from
which a simple correlation between the size of this quantity and the structure
of the conjugated system follows. The bond order for a bond r-s is given by

ioco

— (—1) Ars(g)
o= "0 J () 9° -

—io
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and the integrand A4,/4 is for a non-ring forming group obtained as

4(BoOy")
4

- ! (12)

A(Eo'ﬁol'ﬁ1) A(Eo'602) _4_1_(]_30'0—03)
A(By-Og)(a—2z)  4(By-Ogl) ~ 4(By-Ogt)

I 4 (@ + 2)(a—2)—(a + z)(a—=7)

by developing 4 according to cofactors making use of eqns. (4), (5), and
(6). 4(By-0y2)/4(By-Og¢') is by a further development according to cofactors
obtained as

. A(Eo '601 '602 ‘By)
4By 0p) _  A(By-0yOg)(a—2) a3)
4(By-Op") 1— 4(By-04'-04? 'le v
A(By0g!-0g2)(a—2)

The ratios of determinants of eqn. (12) will thus all contain quotients of the
type expressed by eqn. (8). They could then all be developed into continued
fractions or into quotients of such expressions. It then follows that
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Fig. 3. The integrand of eqn. (1) for some Fig. 4. Bond distance vs. bond order for
of the borate systems of Fig. 2 for a=0.75. boron-oxygen bonds of three-coordinated
boron of some crystalline borates.
-+ H;BO,; AKB;0,-4H,0; 0Ba0-2B,0,
x HBO,; [Na,0-4B,0,
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A(§0'601'§1)
4(By:Og')(a—2)
is always small compared to 1+ (a+z)(a—z) and that
4(By-04? 4(By-0g®
B0 ™ Ao
are always close to 1. For a first estimate of the bond order between three-

coordinated boron and oxygen in any conjugated system we can then use
the simple integrand

(@ +2)(a—2)

4(ByOy') 1
401 == (@ + 2z)(a—z) + 3 (14)

which expression gives the exact solution for the isolated BO,-group. Specific
calculations for some representative groups show that the bond order varies
only by +10 9 from the value appropriate for the BO,-group. The variations
observed in the bond order are mainly dependent upon whether the oxygen
atom involved in the bond considered is singly or doubly connected to the
conjugated system. The term

A(]—go'ﬁol'ﬁﬂ
A(Eo'aol)(“—z)

in the denominator of eqn. (12) is zero for singly connected oxygen atoms
but gives a positive contribution for doubly connected atoms. The bond
order is consequently generally larger for boron oxygen bonds containing
singly connected oxygen atoms than for bonds containing doubly connected
oxygens. It has been assumed earlier that the observed differences in boron
oxygen bond distances of bonds containing externally and internally bonded
oxygen atoms of the conjugated B3Og group met within the orthorhombic
form of metaboric acid should be attributed to such a difference of bond
order.5% The difference in bond distance between these two types of bonds
is, in this case, quite significant and appears to be of the right order. The
structure of some other crystalline borates have been determined with a
high accuracy. Bond distances of these compounds are plotted in Fig. 4 as
a function of bond order, calculated from eqns. (11) and (12) for a value
of @ equal to 0.75. The bond distance is for all these compounds somewhat
longer for bonds containing an internally bonded oxygen atom than for those
containing externally bonded oxygens. This fact further supports the assump-
tion that double bonding is responsible for a considerable shortening of the
bond distance of three-coordinated boron.? It also provides experimental
verification of the fact that there exists a correlation between bond order
and structure of the conjugated system. The size of the bond order is to
some degree also dependent upon the coordination to the conjugated system
of the nearest oxygen neighbours. For bonds containing only singly connected
oxygen atoms variations in bond orders are mainly dependent upon whether
the two oxygen atoms connected to the boron atom of the bond are singly

—(a +2)(a—2)

Acta Chem. Scand. 23 (1969) No. 6



2014 S. E. SVANSON

or doubly connected to the conjugated system. For bonds containing doubly
connected oxygen atoms the correlation schedule is somewhat more
complicated as the bond order here is dependent upon the coordination of
all four oxygen atoms forming the nearest neighbours to the bond in question.
For ring-forming systems the calculation of the bond order becomes somewhat
more complicated. No drastic changes do appear, however, owing to the
extra terms introduced as smaller than six membered rings are not present
in the borates. To account for these smaller structural effects the bond order
has been calculated from the complete expressions for the conjugated groups
present in the crystals reproduced in Fig. 4. As seen from the figure a better
correlation between bond distance and bond order seems to be achieved
when these smaller effects are also considered.

From the results obtained so far effects of second order could be predicted.
In the previous calculations resonance integrals and Coulomb integrals were
assumed to be equal for all bonds and for all atoms of each element,
respectively. As it follows from the first order treatment that the bond order
varies a little between the bonds, the size of the resonance integrals is to
be adjusted proportionally. The resonance integrals are then to be chosen
somewhat larger for bonds containing singly connected oxygen and somewhat
smaller for bonds containing doubly connected oxygen atoms. The charge
density on boron comes out as quite constant from the first order treatment.
The variations, however, call for small changes of «y for the different boron
positions. The charge density on oxygen varies more drastically between
the different oxygen atoms. It is easy to show by a development in accordance
with eqn. (7) that the charge density is generally larger for the singly
connected than for the doubly connected oxygen atoms. For a=0.75 the
charge at the former type of oxygen atoms is about 1.80 charge units, and
for the other type about 1.68. The charge variations at these two different
types of oxygen atoms are less than 42 9, for conjugated groups of different
extension. «, should thus be chosen considerably larger for the singly
connected oxygen atoms than for the others. These refinements lead to a
further increase of the charge density variations at boron. The correlation
schedule between charge density on boron and structure of the conjugated
system, however, still holds true as the variations introduced in the parameters
« and f are also correlated to the structure. After introducing the proper
adjustments of these parameters it could be estimated that the variations
of the charge density should be in the order of 50 9, larger than shown in
Fig. 2.

There exists no correlation, however, between the size of the quadrupole
coupling constant and the structure of the conjugated group as concerns the
n-electron coordination of the three oxygen atoms nearest to the boron atom
considered. The size of the variations in the quadrupole coupling constant
dependent upon the m-electron charge on boron could, from the above
calculations, be estimated to be 0.10 Mc/s between the extreme structures.
Thus this effect is not of a size that could explain the observed variations
in the quadrupole coupling constant between the two groups of compounds.
It is, on the other hand, somewhat too large to account only for the varia-
tions in the quadrupole coupling constants for compounds within each group.
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It may then possibly be assumed that the variations of the m-electron charge
densities on boron are still smaller than calculated above from the simple
Hiickel molecular orbital theory.

The possibility that the variation in the quadrupole coupling constants
between the two groups is due to a reduction of the m-electron resonance
integrals seems to be ruled out by the experimental data. As the s-electrons
give a negative contribution to the quadrupole coupling constant such a
reduction of the resonance integrals would imply an increase of eq@. The
reversed effect is actually observed as the quadrupole coupling constant is
smaller for the group comprising compounds distorted from three-fold
symmetry and perfect planarity. The bond distance bond order correlation
scheme (Fig. 4) provides clear evidence of the fact that the resonance integrals
of the compounds of the two groups do not differ appreciably. The bond
distances of sodium tetraborate and barium tetraborate fall all in the
appropriate region of the other borates although the conjugated groups
here exhibit appreciable deviations from planarity. The observed differences
are in all cases only a small fraction of the total shortening due to the partial
double bond formation.
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