A Point Charge Model of the Hydronium Ion, \(\text{H}_3\text{O}_4^+ \)

NADA SALAJ

Institute of Theoretical Physics, University of Stockholm, S-113 46 Stockholm, Sweden

A simple point charge model, including electrostatic, repulsive, and dispersive interactions, is suggested for complexes including hydrogen bonds. The model is expected to give the equilibrium distance and the binding energy due to the intermolecular hydrogen bonds. It has at present been applied to the hydronium ion, \(\text{H}_3\text{O}_4^+ \).

A theoretical investigation of the strength of the hydrogen bond is specially important when experimental investigations are incomplete. This is the case with the hydronium ion, \(\text{H}_3\text{O}_4^+ \). Quantum mechanical calculations by SCF-MO-LCAO treatment on this ion have previously been performed by Grahn. He has used only 1s, 2s, and 2p orbitals in oxygen and 1s in hydrogen, i.e. a minimal basis set. The atomic orbitals (AO's) in his calculations are all of the Slater type except 2s (in oxygen), which has been given a node by mixing the Slater function 2s' with 1s (in oxygen) and making these two (2s and 1s) orbitals orthogonal. The method is, however, too complicated to be suitable for the variation of the conformation of the ion under consideration. In the present paper a simplified model is suggested for this ion. This model makes possible the variation of the distances between the constituent parts (\(\text{H}_3\text{O}_4^+ \) and three water molecules) of the \(\text{H}_3\text{O}_4^+ \)-ion in order to find the equilibrium distance by minimizing the energy needed to build up the ion out of its constituent parts. The aim of this paper is to give some information on how this simple model works in the case of \(\text{H}_3\text{O}_4^+ \) and to indicate how it, hopefully, may be extended to other complex systems.

A simple point charge model for the \(\text{H}_3\text{O}_4^+ \)-ion is suggested under the assumption that the ion is planar, symmetric and consisting of four parts, namely a \(\text{H}_2\text{O}^+ \)-ion and three water molecules that are bound to the \(\text{H}_2\text{O}^+ \)-ion by hydrogen bonds (Fig. 1). The distances between O and O', O'', O''', have been varied symmetrically while the O—H distances within the four constituent parts have been kept fixed and made equal, i.e. the O—H distance in the \(\text{H}_3\text{O}_4^+ \)-ion has been assumed to be 0.96 Å, which is equal to the O—H distance in a water molecule. These distances have been fixed in accordance with the assumptions made in the paper by Grahn. The model suggested in the present paper includes the pure electrostatic interactions between the different point
Fig. 1. A H_2O_4^+ complex formed by H_3O^+ ion and three water molecules. It is assumed to be planar.

Table 1. x, y, and z are the position coordinates in Å of the point charges in H_2O_4^+-ion (see Figs. 1 and 2), Q is the strength of the point charges in e^+, where $e^+ = +4.8 \times 10^{-10}$ e.s.u., and d is the distance varied.

<table>
<thead>
<tr>
<th>The name of the point charge</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$+0.38$</td>
</tr>
<tr>
<td>H_3^+</td>
<td>$+0.96$</td>
<td>0</td>
<td>0</td>
<td>$+0.59$</td>
</tr>
<tr>
<td>H_2^+</td>
<td>-0.48</td>
<td>$+0.83$</td>
<td>0</td>
<td>$+0.59$</td>
</tr>
<tr>
<td>H_3^+</td>
<td>-0.48</td>
<td>-0.83</td>
<td>0</td>
<td>$+0.59$</td>
</tr>
<tr>
<td>n_1^+</td>
<td>$+0.48$</td>
<td>0</td>
<td>0</td>
<td>-0.38</td>
</tr>
<tr>
<td>n_2^+</td>
<td>-0.24</td>
<td>$+0.42$</td>
<td>0</td>
<td>-0.38</td>
</tr>
<tr>
<td>n_3^+</td>
<td>-0.24</td>
<td>-0.42</td>
<td>0</td>
<td>-0.38</td>
</tr>
<tr>
<td>O'</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>$+4.12$</td>
</tr>
<tr>
<td>H_1'</td>
<td>$d + 0.58$</td>
<td>$+0.76$</td>
<td>0</td>
<td>$+0.28$</td>
</tr>
<tr>
<td>H_2'</td>
<td>$d + 0.58$</td>
<td>-0.76</td>
<td>0</td>
<td>$+0.28$</td>
</tr>
<tr>
<td>n_1'</td>
<td>$d + 0.29$</td>
<td>$+0.38$</td>
<td>0</td>
<td>-0.34</td>
</tr>
<tr>
<td>n_2'</td>
<td>$d + 0.29$</td>
<td>-0.38</td>
<td>0</td>
<td>-0.34</td>
</tr>
<tr>
<td>L_1'</td>
<td>$d - 0.06$</td>
<td>0</td>
<td>$+0.09$</td>
<td>-2.00</td>
</tr>
<tr>
<td>L_2'</td>
<td>$d - 0.06$</td>
<td>0</td>
<td>-0.09</td>
<td>-2.00</td>
</tr>
<tr>
<td>$\text{O}''(\text{O}''')$</td>
<td>$-0.50d$</td>
<td>(±) $0.87d$</td>
<td>0</td>
<td>$+4.12$</td>
</tr>
<tr>
<td>$\text{H}_1''(\text{H}_1''')$</td>
<td>$-0.50d + 0.37$</td>
<td>(−) $(0.87d + 0.89)$</td>
<td>0</td>
<td>$+0.28$</td>
</tr>
<tr>
<td>$\text{H}_2''(\text{H}_2''')$</td>
<td>$-0.50d - 0.95$</td>
<td>(±) $(0.87d + 0.13)$</td>
<td>0</td>
<td>$+0.28$</td>
</tr>
<tr>
<td>$n_1''(n_1''')$</td>
<td>$-0.50d + 0.18$</td>
<td>(±) $(0.87d + 0.44)$</td>
<td>0</td>
<td>-0.34</td>
</tr>
<tr>
<td>$n_2''(n_2''')$</td>
<td>$-0.50d - 0.48$</td>
<td>(−) $(0.87d + 0.06)$</td>
<td>0</td>
<td>-0.34</td>
</tr>
<tr>
<td>$L_1''(L_1''')$</td>
<td>$-0.50d + 0.03$</td>
<td>(±) $(0.87d - 0.05)$</td>
<td>$+0.09$</td>
<td>-2.00</td>
</tr>
<tr>
<td>$L_2''(L_2''')$</td>
<td>$-0.50d + 0.03$</td>
<td>(±) $(0.87d - 0.05)$</td>
<td>-0.09</td>
<td>-2.00</td>
</tr>
</tbody>
</table>

Acta Chem. Scand. 23 (1969) No. 5
charges, the dispersive interactions (mainly those due to dipole-dipole interactions) and the repulsive interactions (being partly due to the Pauli-principle). The two last-mentioned interactions, originating from the dispersive and repulsive forces, are the main interactions between H$_1^+$ and O' (H$_2^+\text{—}O''$ and H$_3^+\text{—}O'''$) (Fig. 1).

The choice of the strength of point charges for the different atoms has been done in accordance with the calculated total net atomic populations derived from the results obtained by Grahn. Negative charges have been placed midway between the atoms in the four constituent parts of the H$_3$O$_4^+$-ion (see Table 1 and Fig. 2). This has been done in order to give the right

Fig. 2. Relative positions of the point charges for the central H$_3$O$_4^+$-ion and one of the water molecules (see also Fig. 1). The z axis is perpendicular to the plane of the paper, i.e. the plane of the H$_3$O$_4^+$-ion. The “lone pair” electrons (L_1' and L_2' in this figure) of the water molecule are shown in projection only (see Table 1).

Table 2. x, y, z are the position coordinates in Å of the point charges in two water molecules as shown in Fig. 3, Q is the strength of the corresponding point charges in e$^+$, where e$^+ = 4.8 \times 10^{-19}$ e.s.u. and d is the distance varied.

<table>
<thead>
<tr>
<th>The name of the point charge</th>
<th>x (Å)</th>
<th>y (Å)</th>
<th>z (Å)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>O'</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+4.12</td>
</tr>
<tr>
<td>H$_1^+$</td>
<td>+0.96</td>
<td>0</td>
<td>0</td>
<td>+0.28</td>
</tr>
<tr>
<td>H$_2^+$</td>
<td>-0.25</td>
<td>+0.93</td>
<td>0</td>
<td>+0.28</td>
</tr>
<tr>
<td>n$_1^+$</td>
<td>+0.48</td>
<td>0</td>
<td>0</td>
<td>-0.34</td>
</tr>
<tr>
<td>n$_2^+$</td>
<td>-0.12</td>
<td>+0.46</td>
<td>0</td>
<td>-0.34</td>
</tr>
<tr>
<td>L$_1'$</td>
<td>-0.04</td>
<td>-0.05</td>
<td>+0.09</td>
<td>-2.00</td>
</tr>
<tr>
<td>L$_2'$</td>
<td>-0.04</td>
<td>-0.05</td>
<td>-0.09</td>
<td>-2.00</td>
</tr>
<tr>
<td>O</td>
<td>$d+0.34$</td>
<td>-0.76</td>
<td>+0.48</td>
<td>+4.12</td>
</tr>
<tr>
<td>H$_1$</td>
<td>$d+0.34$</td>
<td>+0.76</td>
<td>+0.48</td>
<td>+0.28</td>
</tr>
<tr>
<td>H$_2$</td>
<td>$d+0.17$</td>
<td>-0.38</td>
<td>+0.24</td>
<td>+0.28</td>
</tr>
<tr>
<td>n$_1$</td>
<td>$d+0.17$</td>
<td>+0.38</td>
<td>+0.24</td>
<td>-0.34</td>
</tr>
<tr>
<td>n$_2$</td>
<td>$d-0.11$</td>
<td>0</td>
<td>0</td>
<td>-2.00</td>
</tr>
<tr>
<td>L$_1$</td>
<td>$d+0.04$</td>
<td>0</td>
<td>-0.105</td>
<td>-2.00</td>
</tr>
<tr>
<td>L$_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acta Chem. Scand. 23 (1969) No. 5
total charge to the water molecules and to the H_3O^+-ion. This way of handling
the problem gives wrong dipole moments to the water molecules; therefore
two pairs of "lone-pair" electrons have been represented by charges placed
in such a way that each pair is situated symmetrically relative to the water
molecule on a line forming a 55° angle with the plane of the water molecule
and far enough from the oxygen atom to give the experimentally measured
dipole moment to this molecule (see Table 2 and Fig. 3). Assuming a vacuum
in the space between the point charges, the electrostatic potential energy
can be calculated.

The potential energy, $V(r_{AB})$, of the form

$$V(r_{AB}) = a_{AB} \exp(-b_{AB}r_{AB}) - (c_{AB}/r_{AB}^6)$$ \hspace{1cm} (1)

where

$$c_{AB} = \frac{3(eh/\sqrt{m}) \alpha_A \alpha_B}{\sqrt{\alpha_A/N_A} + \sqrt{\alpha_B/N_B}}$$ \hspace{1cm} (2)

is assumed to take care of the interactions between atoms A and B that are
due to dispersive and repulsive effects. α_A and α_B are atomic polarizabilities,
while N_A and N_B are effective numbers of outer-shell electrons for atoms A
and B.5 In the present paper α is assumed to vary strongly only when the
effective number of outer-shell electrons varies strongly in comparison with
the total number of outer-shell electrons in the neutral atom, while α is assumed
to be constant when comparatively small variations of the effective number
of outer-shell electrons are considered. Negligible variations can be expected
to be present for heavier atoms. In the present case where only oxygen and
hydrogen atoms are present, the following assumptions have been made
about α_H (H stands for hydrogen) and α_O (O for oxygen):

1) α_H is assumed to be directly proportional to the effective number
of electrons, N_H, \textit{i.e.} directly proportional to $(1-Q_H)$, where Q_H is the point
charge given to the hydrogen atom when calculating the electrostatic energy.

$$\alpha_H = \text{const.} \times N_H = \text{const.} \times (1-Q_H)$$ \hspace{1cm} (3)

\textit{Acta Chem. Scand.} 23 (1969) No. 5
2) x_o is assumed to be constant because N_o varies only between 5 and 6, i.e. the relative change of the effective number of the outer-shell electrons is comparatively small and consequently N_o has been kept constant.

$$x_o = \text{const.}$$ (4)

The value of c_{OH} in eqn. (2) for the neutral case, where no consideration is taken of the charge on the atom in the molecule, has been put equal to 90.4 Å6 kcal/mole. Then the actual value, c'_{OH}, according to (2), (3), and (4) is

$$c'_{OH} = (1 - Q_H) c_{OH}$$ (5)

where

$$c_{OH} = 90.4 \text{ Å}^6 \text{ kcal/mole}$$ (6)

a_{OH} and b_{OH} have been calculated by assuming

$$\begin{align}
a_{OH} &= \sqrt{a_{OO} \times a_{HH}} \\
b_{OH} &= \frac{1}{2}(b_{OO} + b_{HH})
\end{align}$$ (7)

a_{OO} and b_{OO} have been determined semi-empirically by Scott and Sheraga. 6

$$a_{OO} = 1.35 \times 10^6 \text{ kcal/mole}$$ (8)

$$b_{OO} = 4.59 \text{ Å}^{-1}$$ (9)

a_{HH} and b_{HH} have been calculated 7 from an accurate quantum mechanical calculation for the interaction between two hydrogen molecules by assuming a potential energy of the following form:

$$V(r_{HH}) = a_{HH} \exp(-b_{HH} r_{HH})$$ (10)

(i.e. without the $-c_{HH}/r_{HH}^6$-term). The repulsive centra in that case have been moved from the positions of the atoms into the corresponding bonds, which would correspond to the correction for the dipole-dipole interactions. The values of a_{HH} and b_{HH} determined from very accurate quantum mechanical calculations are not especially suitable for the present calculation under the assumption (1). But since the assumption (7) according to Mason and Rice 8 is not expected to give a high accuracy, the values of

$$a_{HH} = 5.01 \times 10^3 \text{ kcal/mole}$$ (11)

and

$$b_{HH} = 3.73 \text{ Å}^{-1}$$ (12)

from Ref. 7 have been used as initial values.

Because of the uncertainty in the choice of the parameters a_{OH}, b_{OH}, and c_{OH}, these have been tested on a corresponding model for the interaction between two water molecules that were assumed to have the same relative positions as in ice (see Fig. 3 and Table 2). For this reason c_{OH} has been calculated according to the description given earlier in this paper,

$$c_{OH} = (1 - 0.28) \times 90.4 = 65.1 \text{ Å}^6 \text{ kcal/mole}$$ (13)
b_{OH}, as calculated from (7b), has been kept fixed, while a_{OH} has been varied in order to give minimum total energy (electrostatic $+$ dispersive $+$ repulsive) at the experimentally measured equilibrium distance of 2.76 Å between the oxygen atoms in the interacting water molecules. It has been necessary to ascribe a value of 0.52×10^4 kcal/mole, or just 20% of the value originally calculated from (7a), to the parameter a_{OH}. For the following calculations on H$_3$O$_4^+$-ion this corrected value of a_{OH},

$$a_{\text{OH}} = 0.52 \times 10^4 \text{ kcal/mole}$$

and the value from (7a) of

$$b_{\text{OH}} = 4.16 \text{ Å}^{-1}$$

have been used while the value of c_{OH} has been calculated for this case according to the earlier description,

$$c_{\text{OH}} = (1 - 0.59) \times 90.4 = 37.1 \text{ Å}^6 \text{ kcal/mole.}$$

This resulted in an equilibrium distance between the oxygen atoms, corresponding to the minimum position for the total energy, of about 2.45 Å for H$_3$O$_4^+$-ion.

The energy calculated for the interaction between two water molecules, by letting this energy have its minimum for the equilibrium distance of 2.76 Å between the oxygen atoms, is -2.5 kcal/mole (see Fig. 4). The corresponding experimental value is -6.1 kcal/mole which indicates that the value given by the present model is too low by a factor of 2.4. The corresponding energy

Fig. 4. Variation of the interaction energy around the equilibrium distance of 2.76 Å for two water molecules (cf. Fig. 3 and Table 2).

Fig. 5. Variation of the interaction energy for H$_3$O$_4^+$ and a water molecule in hydronium ion, H$_3$O$_4^+$, at equilibrium distance of 2.45 Å (cf. Fig. 2 and Table 1).

for the \(\text{H}_2\text{O}^+ - \text{H}_2\text{O} \) interaction at the equilibrium distance of about 2.45 \(\text{Å} \) is approximately \(-19.3 \text{ kcal/mole} \) (see Fig. 5). If the same factor of 2.4 is assumed to be valid here, the energy drops to a value of \(-46.3 \text{ kcal/mole} \). This is close to the energy calculated by Grahn\(^1\) for the distance of the 2.55 \(\text{Å} \) between the oxygen atoms. The short equilibrium distance and rather high interaction energy value point to quite a strong interaction between the \(\text{H}_2\text{O}^+ \) ion and the three closest water molecules. The variations of the energy around the equilibrium positions can be seen in Fig. 4 for \(\text{H}_2\text{O} - \text{H}_2\text{O} \) interaction and in Fig. 5 for \(\text{H}_2\text{O}^+ - \text{H}_2\text{O} \) interaction.

The values of the parameters \(b_{\text{HH}} \) (see (12)) and \(b_{\text{OO}} \) (see (9)) divided by van der Waals radii of hydrogen, \(r(\text{H}_2) \), and oxygen, \(r(\text{O}) \), give a constant value, \(k \), where \(r(\text{H}_2) = 1.2 \text{ Å} \) and \(r(\text{O}) = 1.5 \text{ Å} \).

\[
\frac{b_{\text{HH}}}{r(\text{H}_2)} \approx \frac{b_{\text{OO}}}{r(\text{O})} \approx k = 3.1
\] (17)

We hope that eqn. (17) can be used for the calculation of the parameter \(b_{\text{AA}} \) for atom A in general by letting it be equal to \(k \cdot r(\text{A}) \), where \(r(\text{A}) \) is van der Waals radius for the atom A. This assumption will be tested in continued studies of the hydrogen bond at this laboratory.

Acknowledgement. This investigation has been supported by grants from the Swedish Natural Science Research Council. The data machine computations have been supported by Kungl. Statskontoret. The author is indebted to Professor Inga Fischer-Hjalmar for having suggested the subject treated here and for her valuable help during preparation of this paper. Thanks are due to Mr. L. Norén for assistance in the numerical computations.

REFERENCES

Received October 22, 1968.

Acta Chem. Scand. 23 (1969) No. 5