Vibrational Frequency Isotope Shifts for SO$_3$^

LLEWELLYN H. JONES

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544, U.S.A.

Stelevik et al.1 have recently determined the harmonic force constants of SO$_3$ from the vibrational frequencies and Coriolis constants of the normal species. In this paper1 they have included some calculations of frequencies of S34O$_3$ and have stated that “one finds that the F_{12} constant could be fixed within ± 0.06 mdyn/Å if one could measure v_2^* (for S34O$_3$) with an accuracy of about ± 0.4 cm$^{-1}$, or v_4^* with about ± 1 cm$^{-1}$.” These limits seem very generous compared to other systems; however, I have been assured2 that they are not typographical errors. If these limits are indeed correct, the observation of the vibrational frequencies of S34O$_3$ would be extremely useful for estimation of the force constants. Therefore, I have made calculations of the frequencies of S34O$_3$, S32O$_3$, and S33O$_3$ in which F_{12} (E') is varied and $F_1(E')$ and $F_2(E')$ are chosen to fit the E' frequencies of the normal species. The results are presented in Table 1.

From these results it is apparent that to determine F_{12} to ± 0.06 mdyn/Å one must measure v_2^* (for S34O$_3$) with an accuracy of about ± 0.4 cm$^{-1}$ or v_4^* with an accuracy of ± 0.2 cm$^{-1}$ rather than ± 5 cm$^{-1}$ and ± 1 cm$^{-1}$, respectively. Actually it is the isotope shift, $v_2(S^{34}O_3) - v_2(S^{33}O_3)$, which must be determined to ± 0.4 cm$^{-1}$. Even this is not unrealistic, especially if extremely sharp lines can be obtained for a dispersion in an argon matrix at very low temperatures.

As Table 1 shows, even more useful would be the difference $v_2(S^{34}O_3) - v_2(S^{33}O_3)$ which would only have to be known to ± 0.7 cm$^{-1}$ to fix $F_{12}(E')$ to ± 0.06 mdyn/Å.

Perhaps it should be mentioned that a knowledge of anharmonicity corrections would be necessary for determining the true harmonic force constants, though the results on the observed frequencies should be fairly good for this molecule.

Received May 6, 1968.

On the Hybridization in the S_2 2 Mechanism in Nucleophilic Displacement of Carbon

OLLE MARTENSSON

Quantum Chemistry Group, Uppsala University, Box 518, S-751 20 Uppsala 1, Sweden

Several concepts in chemistry, such as bond direction and bond angle, have been explained conceptually in a simple way by means of models based on concepts from quantum chemistry (such as sym-

Table 1. E' Symmetry force constants of SO$_3$:

<table>
<thead>
<tr>
<th></th>
<th>F_{12}</th>
<th>F_1</th>
<th>F_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>32S16O$_3$</td>
<td>1391.1</td>
<td>1391.1</td>
<td>1391.1</td>
</tr>
<tr>
<td>34S16O$_3$</td>
<td>1349.0</td>
<td>1347.5</td>
<td>1346.0</td>
</tr>
<tr>
<td>33S18O$_3$</td>
<td>1372.1</td>
<td>1372.9</td>
<td>1373.6</td>
</tr>
<tr>
<td>34S18O$_3$</td>
<td>1329.2</td>
<td>1328.5</td>
<td>1327.8</td>
</tr>
<tr>
<td>34S16O$_3$</td>
<td>23.1</td>
<td>25.4</td>
<td>27.6</td>
</tr>
</tbody>
</table>

a Units of F_1 are millidynes per Ångström.

b This is close to the solution which fits the Coriolis constant, ζ_2.

c Units of v_2 are cm$^{-1}$.

* This work done under the auspices of the U.S. Atomic Energy Commission.

Acta Chem. Scand. 23 (1969) No. 1