Comments and Errata to the Article
"Mean Amplitudes of Vibration in
Molecules with Internal Rotation:
Halogenated Ethanes"

S. J. CYVIN and J. BRUNVOLL

Institutt for teoretisk kjemi, Norges tekniske høgskole, Trondheim, Norway

In the first article of the series on molecules with internal rotation ¹ the following approximate formula was developed for the framework mean-square amplitude.

$$\langle \Delta \varrho^2 \rangle_{\text{frm}} = (\alpha + \beta \cos \theta + \gamma \cos^2 \theta)/\varrho^2$$
 (1)

one of the conclusions which have been reached.2

The coefficients $\alpha(\theta, T)$, $\beta(\theta, T)$ and $\gamma(\theta, T)$ approach θ -independent values when $T \rightarrow \infty$.

This theorem was derived from the known properties of classical limits of mean-square amplitudes. In the present application to halogenated ethanes the above theorem has been verified numerically in the following way. The formula (1) with constant (θ -independent) coefficients was found to reproduce the rigorously calculated framework mean amplitudes with numerical exactness (within 5 to 6 significant figures) at 298°K, as was already stated in the previous paper. At absolute zero on the other hand some deviations

Table 1. α , β , and γ coefficients of eqn. (1) in Å⁴ units.

		α		β		γ	
	T = 0	298°K	T=0	298°K	T=0	298°K	
C_2F_6	0.03882	0.05978	0.00030	0.01194	-0.00029	-0.00037	
C_2Cl_6	0.05261	0.12823	-0.00316	0.02454	-0.00436	-0.02131	
C_2Br_6	0.04126	0.15023	-0.00386	0.03136	-0.00321	-0.02620	

The mentioned article ¹ should be consulted for explanation of the adopted symbols. In the application to halogenated ethanes unfortunately the coefficients of α and γ were given incorrectly. The reported coefficients ¹ in fact apply to the form

$$\langle \Delta \varrho^2 \rangle_{\text{frm}} = (\alpha' + \beta \cos \theta + \gamma' \cos 2\theta)/\varrho^2$$
 (2)

In Table 1 we give the correct coefficients, which are consistent with eqn. (1). They are given both at absolute zero and 298°K, and have been computed by means of an adjustment to the rigorous values at $\theta=0^{\circ}$, 90°, and 180°.

Some further studies have been made ² on the nature of the inherent approximation of eqn. (1), including a consideration of the apparent constancy of the α , β , and γ coefficients. The following statement is

were detectable within the accuracy of the numerical computations. We have reached the conclusion that the approximation of constant α , β , and γ is perfectly sound for halogenated ethanes at room temperature, and even valid with a high degree of accuracy at absolute zero.

- Cyvin, S. J., Elvebredd, I., Cyvin, B. N., Brunvoll, J. and Hagen, G. Acta Chem. Scand. 21 (1967) 2405.
- Cyvin, S. J., Elvebredd, I., Hagen, G. and Brunvoll, J. To be published.
- Decius, J. C. J. Chem. Phys. 39 (1963) 1130;
 Cyvin, S. J. Molecular Vibrations and Mean Square Amplitudes, Universitetsforlaget, Oslo 1968.

Received March 29, 1968.