Lead Tetraacetate Oxidation of Cedrol. Syntheses of 8,14-
Cedranoxide and 14,8-Cedranolide
KEITH H. BAGGALEY, TORBJORN NORIN
and STEFEN SUNDIN
Wood Chemistry Laboratory, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden

Recently a sesquiterpene oxide1 and a lactone,2 from Juniperus foetidissima Willd.1 were characterised and shown to be the cedrene derivatives, 8,14-cedranoxide I and 14,8-cedranolide II. We now report the syntheses of these constituents via transannular lead tetraacetate oxidations of cedrol III, the structure of which has been previously ascertained by a total synthesis.3

Transannular oxygenations of saturated carbon atoms with oxygen species generated by lead tetraacetate are well known, particularly for the syntheses of various steroid oxides.4 The C(14)-methyl group in cedrol III is suitably orientated for an attack by a similar 8 S oxygen species. Preliminary oxidation experiments on cedrol III in benzene confirmed that upon prolonged treatment traces of the oxide I were formed. The reaction rate was very low and side reactions were observed. However, using the method of Heusler et al.,5 in which the oxidation is carried out in the presence of iodine, the oxide I was formed in high yield (50 %). Treatment of the crude lead tetraacetate oxidation product with aqueous acetic acid followed by a chronic acid oxidation yielded, apart from the oxide I (50 % yield), small amounts of 14,8-cedranolide II (7 % yield), probably formed via an intermediate iodoether IV, since the oxide I was found to be stable under these reaction conditions.

Experimental. Lead tetraacetate (4 g) and calcium carbonate (2 g) were heated under reflux in cyclohexane (125 ml) for 10 min. Iodine (1 g) and cedrol (300 mg; m.p. 86–87°; [x]D +10.1°) were added and the mixture was refluxed for 2.5 h. After cooling, the precipitate was filtered off and washed with ether. The combined organic solutions were washed consecutively with 5 % aqueous potassium iodide, 5 % aqueous sodium thiocarbonate, and water. The organic phase was dried (Na2SO4) and the solvents evaporated. The residue was adsorbed from light petroleum (b.p. 40–60°) on to a silica gel column (30 g). Ether (4 %) in light petroleum eluted 8,14-cedranoxide (150 mg, yield 50 %). Rechromatography on silica gel (15 g) with ether (4 %) in light petroleum followed by distillation (bath temp. 100°; 0.1 mm Hg) yielded a pure product identical in all respects ([x]D, IR, NMR, mass spectrum, TLC, and GLC) to those of natural 8,14-cedranoxide.1,2 The rotations of our synthetic and natural 8,14-cedranoxide samples were considerably higher ([x]D = −96°, ε 1.91 in CHCl3) than the value previously reported1 ([x]D = −69°, misprint?) for the natural product.

Acta Chem. Scand. 22 (1968) No. 5
In a separate experiment cedrol (0.6 g) was oxidised with lead tetraacetate according to the procedure described above. The reaction mixture was hydrolysed in a mixture of acetic acid and water followed by a further oxidation in acetone solution with 8 N chromic acid in sulphuric acid (Jones reagent) as described for similar oxidations by Heusler et al.5 The product thus obtained was adsorbed from light petroleum on to a silica gel column (40 g). Ether (4%) in light petroleum eluted 8,14-cedranoxide (0.3 g). Further elution with increasing concentrations of ether gave more polar fractions of which one (0.05 g, eluted by 15% ether in light petroleum) was identified as 14,8-cedranolide III (TLC, IR, and GLC). This oily compound was further characterised by a lithium aluminium hydride reduction which yielded the crystalline SS, 14-cedranediol.6

Received June 10, 1968.

Crystal Structure of
\[\text{Cu(NO}_3\text{)}_{3}\cdot2.5\text{H}_2\text{O} \]

JAN GARAJ

Department of Inorganic Chemistry, Slovak Technical University, Janka 1, Bratislava, Czechoslovakia, and Department of Inorganic Chemistry, Chalmers Technical University, and University of Gothenburg, Fach, S-402 20 Göteborg 5, Sweden

In connection with the problem of bonding of the nitrate group in copper(II) complexes, the structure of one of the hydrates, \[\text{Cu(NO}_3\text{)}_{3}\cdot2.5\text{H}_2\text{O} \] has been established. Some preliminary structural data for this material have been published1 and now the results of a complete X-ray analysis are reported briefly.

Crystals from two different sources were used for the X-ray studies: a) commercially available copper(II) nitrate with the formula \[\text{Cu(NO}_3\text{)}_{3}\cdot3\text{H}_2\text{O} \] pro analysi (product of Lachema, Czechoslovakia), b) material obtained by crystallisation from nitric acid solution according to the reported preparation of \[\text{Cu(NO}_3\text{)}_{3}\cdot2.5\text{H}_2\text{O} \]. (Found for a: Cu 27.10, 27.14; N 11.32, 11.47; H 2.28, 2.36. Calcd for \[\text{Cu(NO}_3\text{)}_{3}\cdot3\text{H}_2\text{O} \]: Cu 27.20, N 11.60; H 2.50. Found for b: Cu 27.46, 27.56; N 11.09, 11.38; H 2.30, 2.30. Calcd for \[\text{Cu(NO}_3\text{)}_{3}\cdot2.5\text{H}_2\text{O} \]: Cu 27.32; N 12.04; H 2.50).

Both kinds of crystals are hygroscopic or efflorescent, depending on the temperature and humidity of the air. Single crystals were coated with nitrocellulose to prevent decomposition during the X-ray investigation.

Crystal data for \[\text{Cu(NO}_3\text{)}_{3}\cdot2.5\text{H}_2\text{O} \]: The crystals are monoclinic, with \(a = 16.455 \pm 0.003 \), \(b = 4.941 \pm 0.001 \), \(c = 15.962 \pm 0.003 \) Å, \(\beta = 93.75 \pm 0.01^\circ \). The measured density at 23°C (by flotation) is 2.28 g/cm\(^3\). The calculated density, corresponding to 8 formula units per cell, is 2.37 g/cm\(^3\). Weissenberg photographs showed the following reflection conditions:

\[F_{hkl} \text{ were present only for } h+k+l=2n, \]
\[F_{h0l} \text{ were present only for } h=2n, l=2n. \]

This leads to the space groups \(I2/c \) or \(I\bar{c} \). A transformation of the axes: \(X=x, Y=y, Z=x-z \), leads to the International Tables space groups No. 15, \(C2/c \) and No. 9, \(Cc \), respectively. The structure of \[\text{Cu(NO}_3\text{)}_{3}\cdot2.5\text{H}_2\text{O} \] was based on the centrosymmetric \(I2/c \) space group symmetry.

The three-dimensional intensities were recorded by equi-inclination Weissenberg photography with Cu K\(\alpha \) radiation and estimated photometrically. The \(hkl \) \((n=0-4)\) data were collected. The structure has been solved by the heavy atom method on the basis of a three-dimensional Patterson synthesis. The atomic positions, isotropic temperature parameters, and scale factors have been refined by the least squares full matrix method using the programs of Gantzel et al.3 The weighting scheme of Cruickshank6 was used. The \(R \) value, based on observed structure factors only, is 0.109. Differential Fourier synthesis did not show larger maxima of electron

Acta Chem. Scand. 22 (1968) No. 5