- Gräsbeck, R., Simons, K. and Sinkkonen, I. Biochim. Biophys. Acta 127 (1966) 47.
- Svensson, H. Arch. Biochem. Biophys. Suppl. 1 (1962) 132.
- Gräsbeck, R. and Sinkkonen, I. Abstracts, Fed. Europ. Biochem. Soc. Meeting, Vienna 1965. Abstract A 250.
- Vesterberg, O. and Svensson, H. Acta Chem. Scand. 20 (1966) 820.
- Gräsbeck, R. Scand. J. Clin. Lab. Invest. Suppl. 95 (1967) 7.
- Simons, K. Soc. Sci. Fennica, Commentationes Biol. 27 (1964) Fasc. 5.
- 7. Eylar, E. H. J. Theoret. Biol. 10 (1965) 89.
- Stenman, U.-H., Simons, K. and Gräsbeck, R. Scand. J. Clin. Lab. Invest. To be published.
- Gräsbeck, R. and Visuri, K. Scand. J. Clin. Lab. Invest. Suppl. 101 (1968) 13.

Received February 28, 1968.

Hydrothermal Preparation of Haematite from Amorphous Iron(III) Hydroxide A. NØRLUND CHRISTENSEN

Department of Inorganic Chemistry, University of Aarhus, Aarhus C, Denmark and

SIDSEL FREGERSLEV

Department of Geology, University of Aarhus, 8000 Aarhus C, Denmark

The hydrothermal preparation of haematite $(\alpha \cdot Fe_2O_3)$ from amorphous iron(III) hydroxide was studied in acid solutions at 180°C. An investigation by Christensen 1 demonstrated that the pH of the mother liquid is decreased by a hydrothermal treatment of freshly pricipitated iron(III) hydroxide when the precipitation of ferric hydroxide is interrupted at pH = 5 or at lower pH values. The decrease in pH as complete precipitation of the iron. In the present investigation the rate of the decrease in pH was investigated.

A solution of 0.1 M ferric nitrate was used in all the experiments. 5 ml of the solution was titrated with a solution of 0.25 M ammonia, as reported in Ref. 1. The titration was interrupted at pH = 4.50

Table 1. Experimental conditions for the preparation of heamatite from amorphous iron(III) hydroxide.

Expt.	Time of	pH of mother	X-ray
Ño.	treatment	liquid after	investigation
	h	treatment	of product
1	0.3	4.59	amorphous
2	0.5	3.20	»
3	0.5	3.15	*
4	1	2.70	α -Fe ₂ O ₃
5	1	2.43	» -
6	1.25	2.50	»
7	1.5	2.44	»
8	1.75	2.43	»
9	2	2.40	*
10	2	2.44	»
11	2	2.41	»
12	4	2.41	*
13	4	2.41	*
14	8	2.41	*
15	16	2.38	»

and the precipitated ferric hydroxide with the mother liquid was transferred to a thick-walled pyrex ampoule. The sealed ampoule was heated in a thermostated oven kept at $180 \pm 1.5^{\circ}\text{C}$. After the hydrothermal experiment the pH of the mother liquid was measured, and the reaction product was washed with water and dried at 25°C. The X-ray powder pattern was obtained with a Philips powder diffractometer. The results are given in Table 1.

The investigation shows that the decrease in the pH of the mother liquid from pH = 4.5 to 2.4 takes approximately 1.5 h. Further treatment does not result in a significant decrease in pH. The product obtained after heating for 1 h is crystalline α -Fe₂O₃. The diffractometer powder patterns show, that there is no detectable increase in the grain size of α -Fe₂O₃ for samples treated for a longer period than 2 h.

The hydrothermal formation of crystalline α -Fe₂O₃ from amorphous iron-(III) hydroxides is in the present investigation completed within a period of 1 to 2 h. α -Fe₂O₃ prepared by the hydrothermal method is possibly a useful material in the preparation of γ -Fe₂O₃ for magnetic tapes.

Christensen, A. N. Acta Chem. Scand. In press.

Received March 27, 1968.