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The compiler described may be used for calculating the concentra-
tions as functions of time for any system of first and second order
reactions. The computer input is the reaction scheme, the rate con-
stants and the initial concentrations, expressed in the conventional
chemical notation so that no special knowledge on computer pro-
gramming is required. The calculation is performed by means of a
Monte-Carlo method. The results of the calculation may be presented
as curves showing the concentrations as functions of time. Some
hypothetical reaction schemes containing autocatalytic steps are used
as examples.

A common problem in chemical kinetics is to calculate concentrations as

functions of time for a postulated set of reactions when the initial concen-
trations and reaction rate constants are specified. Traditionally the problem
is approached by expressing the information contained in the reaction scheme
in differential equations and then proceeding to solve these equations. Un-
fortunately only differential equations originating from relatively simple
reaction schemes can easily be solved. In more complicated cases solutions
can be obtained by means of analog or digital computers.

It would be desirable for the chemist to be able to use the computer without
having any training in computer programming. To make this possible we
must have a language in which the chemist can easily state his problem and
a compiler which will translate the statements into a computer program.
As to the language the chemists conventional symbol language is perfectly
suitable. This language is extremely simple, since it only consists of an arrow,
the plus sign and arbitrary letters serving as names of substances. If we
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restrict ourselves to first and second order reactions, only the following four
expressions can occur in a reaction scheme

A—-B

A4+ B->2C
A—-B+C
A+B—->C+ D

Two or more identical letters may appear in one expression. The meaning of
these expressions is that the substances on the left side are converted into
the substances on the right side at a rate proportional to the concentrations
of the substances on the left side. In the present paper we shall describe a
compiler which allows a digital computer (GIER) solution of any problem
which can be formulated in terms of the above four expressions.

The above symbols may be looked upon as a stenographic notation of what
is observed to happen in a chemical reaction, but it does not presuppose any
specific way of calculating the various concentrations as functions of time.
Given the language, one can freely choose a mathematical model which is
convenient for calculation, i.e. we do not necessarily have to use differential
equations. When a computer is used in the calculation of numerical results
the most direct approach is to simulate the reaction by means of a stochastic
model. It is possible to invent many different models of chemical reactions
based on stochastic principles. One such model has been described in detail
by Schaad.! The model described in the present paper is quite different from
that of Schaad, and it has the advantage of requiring much less memory
capacity in the computer.

DESCRIPTION OF THE MODEL

As the compiler is not restricted to be used for calculations in chemical
kinetics a somewhat abstract description of the mathematical model and the
adopted language will be given.

We assume that the system we want to study can be in certain states, and
that each of these states can be described by a set of integers, m,, my, . . .,my,
called the parameters. To each parameter is associated a name. (In reaction
kinetics the parameters will be the numbers of molecules of different sub-
stances.) Furthermore we assume that the system may undergo a sequence
of transformations of the following types:

1) parameter m; is reduced by one and m, increased by one for arbitrary i
and k,

2) parameters m; and m, are reduced by one and m, increased by one for
arbitrary i, j, and k,

3) parameter m, isreduced by one and m, and m, increased by one for arbitrary
i, k, and 1,

4) parameters m; and m; are reduced by one and m, and m, increased by one
for arbitrary i, j, k, and 1.
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The probability that the system undergoes a certain transformation is
proportional to m; if the transformation is of type 1 or 3, and proportional
to mym, in case 2 or 4 if i  j and to my(m;—1) if i = j.

The probability that no transformation occurs, ¢. e. identity transforma-
tion, is 1 minus the sum of all probabilities of proper transformations. By
definition, time is proportional to the number of transformations, including
identity transformations, which have occurred.

A description of the system is a list of transformation rules, the pro-
portionality constants entering into the probabilities and the initial values
of the parameters. In the description we use the following notation: The trans-
formation by which the parameter a is reduced by one and the parameter b
is increased by one is denoted

a—>bk

where k is the proportionality constant, and similarly

a-+b—ck
a—>b-+ck
a+b—>c+dk

We signify that the parameter a has the initial value % by
a=nh

If a name appears in the list of transformations but the initial value of it is
not defined, it is taken to be 0.

When the compiler has been loaded into the computer followed by a descrip-
tion of a system the computer will do the following:

For each name appearing in the description the computer will choose a
storage-location for holding the initial value of that name.

For each transformation rule the computer will choose locations for
holding the addresses of the locations corresponding to the names appearing
on the left and right side of the — sign, a location for the proportionality
constant, and a location which during the calculations will hold the probability
that this transformation will be executed.

When this has been done the computer will proceed as follows:

1) calculate the probability, p,, corresponding to each transformation rule,
T, using the addresses and proportionality constant mentioned above, and
store this in the location reserved for that purpose.
2) generate a random number, r, 0 < r < 1, and determine from the set of
transformation rules, 7', that particular 7'; which satisfies

I—1 I

.'_Zpi < r and Z{), >r
if such a 7'; exists. - "
0 1
| | i l

P P2 Ps PN identity transf.
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This procedure may be visualized as follows: We divide the real axis from
0 to 1 into intervals corresponding to each transformation rule in such a
way that the it* interval is of length p,, and we then execute the I'® trans-
formation if r belongs to the It interval.

3) if a transformation rule satisfying 2) is found, add one to the parameters
appearing on the right hand side of — in that rule and subtract one from
those appearing on the left side.

4) Add one to the number of transformations executed and repeat the process
from 1).

If, for example, we take a first order reaction the number of reactant and
product molecules may be used as parameters, denoting the reactant by A
and the product by B. A description of this system ready to be loaded into
the computer is

A — B, 0.0001
A = 1000

The machine will calculate the initial probability of transformation as 0.1
and if the first random number is < 0.1, the state will be changed to A = 999,
B = 1. After the first transformation the probability will be 0.0999 or 0.1
depending on whether the first random number < 0.1 or > 0.1 efe.

During the calculation on a particular reaction scheme the sum of trans-
formation probabilities may increase or decrease several orders of magnitude.
A low sum of probabilities is, however, uneconomical since it means that an
excessive number of identity transformations are calculated. A mechanism
which will automatically optimize the sum of transformation probabilities
was, therefore, introduced in the compiler. If during the calculation the
sum of probabilities exceeds one the computer will make a correction by
dividing all proportionality constants by two and counting two transforma-
tions as one in the following calculations. On the other hand if the sum of
probabilities falls below a certain limit (arbitrarily fixed to 0.35) the calculation
speed is increased by the reverse correction.

COMPARISON WITH THE DIFFERENTIAL EQUATION MODEL

The model used is a discrete time Markov-process with stationary transi-
tion probabilities. The result of our computation is a sample function of this
process. If many sample functions of the above first order reaction were cal-
culated and the mean values of the parameters were found these would satisfy
the equation A (mean) = A, (1—k)", where A, is the initial value of A, &
is the proportionality constant and » is the number of transformations. To
compare this with the solution of the differential equation for the first order
reaction we observe that if the relationship between time and the number of
transformations in the Markov-process is given by ¢ = ¢-n, where ¢ is a pro-
portionality constant, and if the conventional rate constant of the reaction
is k' then k'-c = k. Substituting in the above expression we get A = A,
(1—k'-c)e. If we let ¢ tend to zero, that is we represent an interval of time by
an increasing number of transformations, we get

Acta Chem. Scand. 21 (1967) No. 3



COMPILER FOR DIGITAL COMPUTATION 795
lim(A) = lim(Ay(1 — k")) = Age** = Agen
c—>0 c—>0

When a similar limit argument is used to the second order reaction the
expression for the mean values is not identical with the solution of the dif-
ferential equation model. Renyi 2 has shown that for a second order reaction
the mean values will satisfy a differential equation which differs from the one
usually used to describe a second order reaction by having an extra term. The
relative importance of this extra term will, however, tend to zero as the number
of molecules gets large. A comparison of the stochastic mean values and the
classical deterministic expressions for reversible chemical reactions involving
second order steps has been done by Darvey et al.?

RELIABILITY OF THE CALCULATION PROCEDURE

It is intuitively clear (and can be verified by experiments on the computer)
that the relative random deviation of the sample function from the mean
decreases as the initial values of the parameters increases. Since, when the
present model is used, the load on the memory in the computer depends on the
number of transformation rules and not on the values of the parameters the
technical limit of the value of each parameter is very high. Consequently the
error of the calculations can be reduced to any desired level by increasing
the values of the parameters. However, if the parameters are multiplied by
a factor q then the calculation time is also multiplied by q, but, according to
our experience, the error is only divided by approximately the square root
of q. Thus the cost in computing time of reducing the error is considerable.

We have not been able to obtain any general theoretical evaluation of
the error as a function of the values of the parameters. Our practical experience
is that for simple reaction schemes with a few first or second order reactions
an error of about 1—2 9, and a calculation time of 10—100 min is obtained
when the initial values of the parameters are about 10 000. This conforms with
the results reported by Schaad.

In addition to the simple reaction schemes the compiler has been suc-
cessfully tested on more complex cases including polymerisation processes
with up to 100 simultaneous reactions and the relaxation of vibrationally
excited states in a gas. In the following we shall show examples of the use of the
compiler on different oscillatory reaction schemes none of which have been
analytically solved. In one case, the Volterra scheme, a numerical evaluation
of the error is presented.

REACTION SCHEME WITH ONE AUTOCATALYTIC REACTION

The following reaction scheme, invented by Lotka,* was the first oscillatory
scheme appearing in the chemical literature.

a = A
A—->B : (H
B—->C
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[a] is taken to be constant, and the second reaction is postulated to be auto-
catalytic. Although Lotka was unable to calculate the time evolution of the
reaction scheme, he found that a stationary state where [A] = k;/k, would
eventually be reached. He further noted that there was a possibility for a
damped oscillation while the stationary state was approached.

The above scheme cannot be used directly as input for calculation since
it would be interpreted as three first order reactions. However, the additional
assumptions, that the first reaction is of zeroth order and that the second
reaction is autocatalytic, can easily be expressed in reaction equations. The
zeroth order reaction is written

a > A+ a

and the autocatalytic reaction is written
A+ B—> 2B

A slow zeroth order reaction supplying B must be added to the reaction scheme,
since the autocatalytic reaction requires initiation. After these modifications
scheme (I) appears as

a—> A 4 a

A+ B—>2B (I)

B>

a—>B 4 a

In Fig. 1 is shown the result of a computation of the time evolution of scheme
(I). It is seen to be in accord with the theory, ¢.e. [A] approaches the value
ks/k, through a damped oscillation.

\/\/\_/A
/\/‘\—/V\—B

Fig. 1. Time evolution of a reaction scheme containing a zeroth order reaction supplying
a substance, A, which is consumed by an autocatalytic reaction (branched chain reaction).

Computer input: a > A +a 0.9
A+B->B+B 5,0—9
B> C 2,0—4
a - B + a w0—4
a =1
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REACTION SCHEMES WITH TWO AUTOCATALYTIC REACTIONS

A reaction scheme with two autocatalytic reactions, originally invented
by Lotka, was studied by Volterra,® who interpreted the substances as animal
species devouring each other. The Volterra scheme is

A, > 2A,
A+ A, - A, (IT)

A, + A, > 24,
A, > M

Fig. 2. Time evolution of reaction scheme containing a sequence of two autocatalytic
reactions (Volterra scheme).

Computer input: a—>a-+ a w—4
a+b->Db+ Db 0—38
a+ b->D>b 0—38
b->ec¢ w0w—4%
a = 5000
b = 5000

Fig. 2 shows the result of a computation of the time evolution of the
Volterra scheme (II). Volterra showed that the trajectory of [A;] and [A,]
in the phase plane is a closed curve. The reliability of the computation may,
therefore, be estimated by examining how closely the representative point
returns to the initial point. For this purpose the time evolution of the Volterra
scheme (II) was computed for several different rate constants and initial
concentrations. The result of these calculations is shown in Table 1.

The Volterra scheme is essentially a sequence of two autocatalytic reactions.
A somewhat different combination of two autocatalytic reactions, possibly

Table 1. Deviation of recurrence of the initial point in the Volterra process at different

rate constants and initial concentrations. The error is defined as the distance between

the initial point and the nearest point after one cycle divided by the distance from the
origin in the phase plane (A, versus A,.)

ky ky ks k, a b error
4,,—5 4,,—9 4,—9 4,,—5 10 000 10 000 0.006
2,—5 10—9 10—9 4,,—5 18 000 18 000 0.04
4,—5 10—9 0—9 2,—5 18 000 18 000 0.02
4,,—5 0w—9 0—9 2,,—5 15 000 15 000 0.01
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having a closer relation to reality, is obtained when the phenomenon of
quadratic branching is included in the reaction scheme. Quadratic branching
or positive chain interaction was postulated by Semjonow ? for the explanation
of certain phenomena in chain reaction kinetics. The idea is that free radicals
constituting the chain center may interact to produce new radicals which
propagate the chain reaction more effectively than the previous ones. The
following reaction scheme contains a zeroth order reaction supplying a sub-
stance B which is consumed by a quadratically branched chain reaction.

- 92X (III)

N N N I

Fig. 3. Time evolution of a reaction scheme containing a zeroth order reaction supplying
a substance, b, which is consumed by a quadratically branched chain reaction.

Computer input: a—>b+ a 10—1
b+ x->x+4x 10—9
X+ x-»>y+Yy 50—
b+y-»x+4x 1.6,,—9
X = ¢ 4,—4
y-»d 4,,—4
a8 > X 4 8 10—
a =1

Fig. 3 shows the time evolution of this scheme. The curve is very similar to
the curve obtained when the concentration of iodine is recorded as a function
of time in the oscillating reaction of iodate and hydrogen peroxide described
by Bray.8 One of the authors (H.D.)® has collected some experimental evidence
that this oscillation is caused by the intermittent action of a branched free
radical chain reaction. Quadratic branching would be an explanation of the
sustained oscillation in this reaction.

Acta Chem. Scand. 21 (1967) No. 3



COMPILER FOR DIGITAL COMPUTATION 799

REACTION SCHEMES CONTAINING MORE THAN TWO AUTOCATALYTIC
REACTIONS

Lotka’s idea of a sequence of two autocatalytic reactions was extended
to a series of several autocatalytic reactions by Moore,’® who examined the
following general scheme

w—->W
W+ A, = 2A,
A+ A, —» 24,
e (IV)
A, + A, - 24,
A, »>P
pe—— .'b\
f
A
B

Fig. 4. Time evolution of a reaction scheme containing a zeroth order reaction supplying
a substance, b, which is consumed by a sequence of (A) four and (B) five autocatalytic

reactions.

Computer input: (A) a »b + a 0.9 B)a ->b+a 0.9
b+c—o>c+e 10— b+c—>c+ec 5,0—9
c+d->d+d 5,—9 c+d-»>d+d 5,,—9
d+e—+e +e 5,0—9 d+e—»e+e 5,,—9
e+ fo>f 4 f 5,0—9 e+ f>f+f 5,0—9
f-g 10—5 f+g->g+sg 5y—9
a—>cCc-H4a 10—4% g—->h 10—5
a->d+4 a 10—4 a->c+a w—4
a-—>e -+ a w—4% a->d-+a 10—4%
a—>f+a 10w—4% a—>e 4 a 10—4%
a=1 a>f +a 0—4

a->g-4a 10—4%
a=1

Moore was able to calculate the time evolution of such systems by means
of a differential analyser if the simplifying assumption [W] = constant was
made. When the kinetic compiler is used such a restriction is not necessary.
In Fig. 4 is shown the time evolution of two reaction schemes of the type (IV)
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containing a series of four and five autocatalytic reactions, respectively. A
distinction between cases with an even and an odd number of autocatalytic
substances was stressed by Moore. The difference between these two cases
is clearly seen from the curves. In the case of an even number of autocatalytic
substances the precursor (b) and the even numbered autocatalysts constitute
a group of substances with high concentrations whereas the odd numbered
autocatalysts have low concentrations when the stationary oscillation has been
attained. This situation is reversed when the total number of autocatalysts
is odd. The distribution of even and odd numbered autocatalysts followed
the same rule in reaction schemes containing 1, 2, 3, and 6 autocatalytic
substances.

CONCLUDING REMARKS

After the different trials it is concluded that the compiler is extremely
flexible and easy to use. The only disadvantage is that the calculation time
is rather high. The curves in Figs. 1—4 occupied the GIER computer for
about 2, 2, 11, 18, and 18 h, respectively. It should be noted, however, that a
similar compiler may be constructed for any digital computer, and there
exist computers which would do the same calculations 10—50 times faster
than the GIER. The calculation time would, in such case, always be within
the limits required for practical work.
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