The Crystal and Molecular Structure of \textit{anti}-Furfuraldoxime

\textsc{Birthe Jensen and Bodil Jerslev}

\textit{Chemical Laboratory C, The Royal Danish School of Pharmacy, Copenhagen, Denmark}

\textit{anti}-Furfuraldoxime, \(\text{OC}_2\text{H}_4\text{-CH}=\text{NOH}\), crystallizes as monoclinic needles. The space group is \(\text{P2}_1/c\), \(z = 4\), the \(b\)-axis is short. The structure determination is based upon visually estimated intensities of 1007 independent reflections obtained with CuK\(\alpha\)-radiation at room temperature. A three-dimensional, sharpened Patterson function gave the clue to the solution of the structure, and least squares, full matrix refinements were carried out. A difference Fourier synthesis revealed 3 of the 5 hydrogen atoms in the molecule.

The bond lengths and valency angles of the molecule are normal. The conformation of the bond system \(\text{O}-\text{C}-\text{C} = \text{N}\) is \(\text{trans}\). The side chain is turned less away from the plane of the furan ring than expected. This implies a rather short intramolecular distance, 2.86 Å, between the oxime oxygen atom and a ring carbon atom. Hydrogen bonds \(\cdots \text{N} - \text{O} - \text{H}\cdots \text{N} - \text{O} - \text{H}\cdots\) link the molecules in infinite chains along the screw-axis. This type of molecular association appear to be characteristic for aromatic \textit{anti}-aldoximes.

The main research activity in this laboratory has for some years been concentrated on the structure and chemistry of organic derivatives of hydroxylamine, and the present work is a part of this program. The purpose of studying the crystal structure of \textit{anti}-furfuraldoxime was partly to compare the geometry of the oxime moiety of that molecule with the dimensions found in some benzenoid aldoximes\(^1\),\(^2\) and partly to establish whether intramolecular or intermolecular hydrogen bonding is present. \textit{A priori} one would expect a monomeric structure, since the geometry of the \textit{anti}-furfuraldoxime molecule apparently is favourable for the formation of an intramolecular hydrogen bond with the ring oxygen as the acceptor atom. In the \textit{syn}-isomer, however, molecular association by hydrogen bonds would be expected, since intramolecular hydrogen bonding is geometrically prevented. Yuan and Hua\(^3\) tried to obtain experimental support for these ideas by cryoscopic measurements but the results indicated a molecular association which is even more pronounced with the \textit{anti}-form than with the \textit{syn}-form. To explain these results the authors reluctantly suggested that the configurations assigned to the isomers might have to be interchanged. Another explanation of Yuan and Hua's results was given by Jerslev,\(^4\) \textit{i.e.} that the \textit{syn}-isomer is associated to dimers and the \textit{anti}-isomer to infinite chains by hydrogen bonds \(\text{O} - \text{H} \cdots \text{N}\)

\textit{Acta Chem. Scand.} 21 (1967) No. 3
in analogy to the associations found in the crystal structures of syn- and anti-
p-chlorobenzaldoximes, respectively. This suggestion was supported by the
observation, Jerslev,4a that similar hydrogen bonding systems apparently
exist in the crystal structures of a number of other benzenoid syn- and anti-
aldoximes as indicated both by IR-spectra and by the fact, that the melting
point of the trans-form (syn-isomer, proposed dimerized) invariably is lower
than that of the cis-form (anti-isomer, proposed infinite molecular chains).

EXPERIMENTAL

anti-Furfuraldoxime was prepared by reacting furfural with hydroxylamine5 and
purified by recrystallization from 10 \% ethanol. By slow evaporation of a benzene-ligroin
solution crystals were obtained (m.p. 90–91\textdegree) which under the polarizing microscope
were found to be monoclinic needles elongated in the b-direction. The faces (100) and
(102) were observed, but only the former were well developed. The crystals are very
easily cleaved parallel to (100). The density, 1.38 g/cm3, was found by flotation in potas-
sium iodide solution. The crystals are rather volatile.

X-Ray data were collected at room temperature using CuK\textalpha-radiation and Weissen-
berg equi-inclination techniques. Multiple film exposures were made and the intensities
were estimated visually by means of intensity scales calibrated to make each spot about
10 \% more intense than the previous one. During the exposures the crystals were enclosed
in Lindemann capillaries. The reflections hKl with $K = 0–4$ were registered from a
needle with dimensions $0.8 \times 0.2 \times 0.35$ mm3. Another crystal was partly dissolved by
careful brushing with dioxane to give a needle elongated in the [102] direction with the
dimensions $0.7 \times 0.25 \times 0.35$ mm3. This specimen was used for registration of the
layers 0–14 obtained by rotating the crystal around the [102] axis. No corrections for
absorption or extinction were applied, but variations in spotshape were taken into
account following Phillips.6 Corrections for Lorentz-, polarization-, and Cox-Shaw-
factor were carried out on the GIER-computer. Correlation of the data was made by
hand using reflections common to the two sets of films. Preliminary scale factor and
temperature factor were found by Wilson's method7 using h0l-reflections only. 1007
independent reflections were observed corresponding to 82 \% of the theoretically ob-
tainable. Some two-dimensional computations were carried out on the analogue computer
built by Frank.8 Most calculations were performed on GIER machines or on the IBM
7090 computer at NEUCC. A table of observed and calculated structure factors may be
obtained from the authors. Please refer to project number C 1055.

STRUCTURE DETERMINATION

The unit cell dimensions were determined from zero zone Weissenberg
photographs taken with only one film in the camera. $a = 9.74$ Å, $b = 4.96$ Å,
$c = 14.26$ Å, $\beta = 128.8\textdegree$. The systematic absence of reflections h0l when
l is odd and of 0k0 when k is odd indicate the space group $P2_1/c$. There
are 4 molecules in the unit cell corresponding to a crystallographic density of
1.37 g/cm3. The absorption coefficient $\mu_{CuK\alpha}$ is 9.5 cm-1.

The structure was deduced from the sharpened Patterson function $^9P(xyz)$.

\begin{equation}
^9P(xyz) = \sum_x \sum_y \sum_z \left| F(hkl) \right|^2 \exp[(2B-B_1) \sin^2\theta/\lambda^2] \cos 2\pi(hx + ky + lz).
\end{equation}

$B_1 = 1.5$

A fourier program written for GIER by Lauesen was used.10 From the approxi-
mate knowledge of the dimensions of the planar part of the molecule which
comprises the furan ring and C-6 (Fig. 1) it is obvious, that many intramolec-

ular vectors of lengths 1.4 Å and 2.3–2.4 Å must be coplanarily situated around origo. By inspection of the distribution of peaks on the surfaces of two spherical sections of \(P(xyz)\) with radii 1.4 and 2.3 Å and centered in origo the corresponding peaks were found, and this gave the orientation of the molecular plane as well as the orientation of the furan ring in that plane. This in combination with a study of the Harker section \(P(xz)\) (Fig. 2) and of \(P(xz)\) gave a few plausible trial structures for the projection on the \(b\)-plane. The final projection was found using the \(R\)-minimisation method of Bhuiya and Stanley. An ALGOL program written by Danielsen was used. The \(R(h0l)\) value dropped to 22.5 %.

The \(y\)-coordinates of the atoms were readily deduced from the Harker line \(P(0yz)\) and the section \(P(xz)\).

Fig. 2 shows clearly, that high peaks appear midway between the Harker peaks corresponding to C-3 and C-4, C-3 and O-8, and C-4 and C-8, thus indicating that C-3, C-4, and O-8 are probably situated at approximately the same \(y\)-level. Similarly the atoms C-2, C-5, and N-7 appear to have a common \(y\)-
coordinate as well as the two atoms O-1 and C-6. Trial y-parameters were obtained from these deductions combined with the fact, that the Harker line $P(0y1)$ showed a peak at $y = 0$, and a greater one at $y \approx \frac{1}{4}$ indicating that one of the above named three groups of atoms is situated approximately in one of the glide planes and the other two lie at y levels separated about $\frac{1}{4}y$ from a glide plane. Subsequent R-minimisation reduced in four cycles the $R(hk0)$ value to 22%.

Refinement was performed by Busing, Martin and Levy's least squares full matrix program ORFLS13 first using isotropic temperature factors and with all observed reflections introduced in the calculations. One cycle reduced the overall R-factor from 26 to 22\%, and further refinement did not take place. Then all (189) structure factors with sin $\theta/\lambda < 0.35$ were removed to avoid influence from the hydrogen atoms, and three cycles of refinement including individual, anisotropic temperature factors for the C, N, and O-atoms reduced the R-factor for the 1007–189 = 818 structure factors to 12\%; in the final cycle all coordinate shifts were smaller than their standard deviation, but some β_{ij}-shifts were still of the same order of magnitude as their standard deviation.

A three dimensional F_c-F_e synthesis including all observed structure factors did only reveal three of the five hydrogen atoms in the molecule. Attempts to refine hydrogen positions based upon considerations of a model of the molecule were unsuccessful. Structure factor calculations including the three hydrogen atoms found, all with a common $B = 3.0$, lead to $R = 13.7\%$ for all observed reflections.

DISCUSSION OF THE STRUCTURE

The structural parameters found are shown in Tables 1 and 2; Fig. 3 shows the molecular dimensions and Fig. 4 the packing of the molecules in

Table 1. Final atomic coordinates and their standard deviations, in fractions of the corresponding cell edges. (Based upon 818 refl.)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>σx</th>
<th>y</th>
<th>σy</th>
<th>z</th>
<th>σz</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>0.2192</td>
<td>0.0007</td>
<td>0.2226</td>
<td>0.0010</td>
<td>0.0372</td>
<td>0.0005</td>
</tr>
<tr>
<td>C2</td>
<td>0.3282</td>
<td>0.0010</td>
<td>0.3559</td>
<td>0.0018</td>
<td>0.0223</td>
<td>0.0007</td>
</tr>
<tr>
<td>C3</td>
<td>0.3951</td>
<td>0.0009</td>
<td>0.5815</td>
<td>0.0016</td>
<td>0.0895</td>
<td>0.0007</td>
</tr>
<tr>
<td>C4</td>
<td>0.3241</td>
<td>0.0008</td>
<td>0.6001</td>
<td>0.0014</td>
<td>0.1519</td>
<td>0.0006</td>
</tr>
<tr>
<td>C5</td>
<td>0.2197</td>
<td>0.0007</td>
<td>0.3786</td>
<td>0.0011</td>
<td>0.1183</td>
<td>0.0005</td>
</tr>
<tr>
<td>C6</td>
<td>0.1077</td>
<td>0.0008</td>
<td>0.2872</td>
<td>0.0012</td>
<td>0.1419</td>
<td>0.0005</td>
</tr>
<tr>
<td>N</td>
<td>0.0672</td>
<td>0.0007</td>
<td>0.3756</td>
<td>0.0011</td>
<td>0.2051</td>
<td>0.0005</td>
</tr>
<tr>
<td>O8</td>
<td>0.1496</td>
<td>0.0007</td>
<td>0.6210</td>
<td>0.0010</td>
<td>0.2548</td>
<td>0.0005</td>
</tr>
<tr>
<td>H3</td>
<td>0.4750</td>
<td>0.0147</td>
<td>0.7500</td>
<td>0.0251</td>
<td>0.1000</td>
<td>0.0101</td>
</tr>
<tr>
<td>H4</td>
<td>0.3500</td>
<td>0.0149</td>
<td>0.0760</td>
<td>0.0258</td>
<td>0.2050</td>
<td>0.0105</td>
</tr>
<tr>
<td>H6</td>
<td>0.0500</td>
<td>0.0149</td>
<td>0.1000</td>
<td>0.0257</td>
<td>0.1000</td>
<td>0.0101</td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acta Chem. Scand. 21 (1967) No. 3
Table 2. Anisotropic temperature parameters U_{ij} Å\(^2\) and their standard deviations. (Based upon 818 refl.)

<table>
<thead>
<tr>
<th></th>
<th>U_{11}</th>
<th>σ</th>
<th>U_{22}</th>
<th>σ</th>
<th>U_{33}</th>
<th>σ</th>
<th>U_{12}</th>
<th>σ</th>
<th>U_{13}</th>
<th>σ</th>
<th>U_{23}</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>0.0584</td>
<td>(28)</td>
<td>0.0408</td>
<td>(25)</td>
<td>0.0501</td>
<td>(26)</td>
<td>-0.0065</td>
<td>(21)</td>
<td>0.0475</td>
<td>(24)</td>
<td>-0.0011</td>
<td>(20)</td>
</tr>
<tr>
<td>C2</td>
<td>0.0610</td>
<td>(40)</td>
<td>0.0744</td>
<td>(50)</td>
<td>0.0626</td>
<td>(40)</td>
<td>0.0031</td>
<td>(36)</td>
<td>0.0578</td>
<td>(37)</td>
<td>0.0045</td>
<td>(37)</td>
</tr>
<tr>
<td>C3</td>
<td>0.0424</td>
<td>(33)</td>
<td>0.0574</td>
<td>(41)</td>
<td>0.0594</td>
<td>(40)</td>
<td>0.0008</td>
<td>(30)</td>
<td>0.0453</td>
<td>(33)</td>
<td>0.0067</td>
<td>(33)</td>
</tr>
<tr>
<td>C4</td>
<td>0.0321</td>
<td>(27)</td>
<td>0.0415</td>
<td>(32)</td>
<td>0.0444</td>
<td>(31)</td>
<td>-0.0019</td>
<td>(26)</td>
<td>0.0316</td>
<td>(26)</td>
<td>0.0014</td>
<td>(28)</td>
</tr>
<tr>
<td>C5</td>
<td>0.0339</td>
<td>(26)</td>
<td>0.0269</td>
<td>(27)</td>
<td>0.0307</td>
<td>(25)</td>
<td>0.0031</td>
<td>(22)</td>
<td>0.0282</td>
<td>(23)</td>
<td>0.0003</td>
<td>(22)</td>
</tr>
<tr>
<td>C6</td>
<td>0.0412</td>
<td>(30)</td>
<td>0.0258</td>
<td>(27)</td>
<td>0.0363</td>
<td>(28)</td>
<td>-0.0023</td>
<td>(23)</td>
<td>0.0329</td>
<td>(26)</td>
<td>0.0006</td>
<td>(22)</td>
</tr>
<tr>
<td>N</td>
<td>0.0435</td>
<td>(26)</td>
<td>0.0289</td>
<td>(25)</td>
<td>0.0413</td>
<td>(26)</td>
<td>0.0008</td>
<td>(21)</td>
<td>0.0376</td>
<td>(24)</td>
<td>0.0034</td>
<td>(21)</td>
</tr>
<tr>
<td>O8</td>
<td>0.0564</td>
<td>(27)</td>
<td>0.0405</td>
<td>(25)</td>
<td>0.0607</td>
<td>(28)</td>
<td>-0.0118</td>
<td>(20)</td>
<td>0.0530</td>
<td>(25)</td>
<td>-0.0159</td>
<td>(21)</td>
</tr>
</tbody>
</table>
Fig. 3. Intra-molecular distances (Å) and angles (°). Standard deviations on bond lengths are 0.007 Å—0.016 Å and on angles 0.3°—0.9°. The numbers in angular parentheses are the distances in Ångström of the atoms from the plane through C-2, C-4, and C-6.

Fig. 4. The structure viewed along the b-axis. The O—H...N hydrogen bonds are shown together with a selection of van der Waals’ contacts. Referred to molecule 1 dotted lines point upwards and broken lines downwards.

the crystal lattice. The carbon atoms and the ring oxygen are coplanar within 0.01 Å. The bond lengths and valency angles in the ring agree excellently with the values found by Bak, Hansen and Ræstrup-Andersen 14 in their microwave study of furan. The dimensions of the oxime moiety do not differ significantly from those found in a number of other oximes. The sidechain is turned only 6° out of the plane of the ring, giving rise to a rather close van der Waals’ contact between C-4 and O-8. The three hydrogens, which showed up in the difference synthesis, were situated in the expected positions; C—H distances,

Acta Chem. Scand. 21 (1967) No. 3
which may be very inaccurate, were found as C-3—H 1.09 Å, C-4—H 1.01 Å and C-6—H 0.97 Å. It may be worth mentioning, that the hydrogen at C-4 as expected is very much displaced from the straight line between C-4 and O-8.

Hydrogen bonds O—H···N link the molecules in infinite chains as proposed by Jerslev. The hydrogen bonds connect the molecules in the b-direction, but otherwise only intermolecular distances corresponding to weak van der Waals’ contacts are seen. The molecular packing found explains readily the cleavage parallel to the b-axis and the rather pronounced volatility of the crystals.

REFERENCES

3. Yuan, H.-C. and Hua, K.-C. J. Chinese Chem. Soc. 7 (1940) 76.
4. and 4a. Jerslev, B. Studier over oximernes struktur. (Diss.), Copenhagen 1958, p. 113 and p. 131.
12. Danielsen, J. ALGOL program D45, University of Aarhus, Denmark.

Received November 25, 1966.

Acta Chem. Scand. 21 (1967) No. 3