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Direct Calculation of Successive Stability Constants

from an Experimental Formation Curve
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Kjemisk Institutt, Norges Lererhggskole, Trondheim, Norway

After a brief review of the most important pre-computer methods
for calculating successive stability constants of mononuclear chelates,
J. Bjerrum’s ‘“half %’ method is discussed. The refinement by
successive approximations is found unnecessary, since direct ex-
pressions for the true values are easily obtained.

The determination of successive stability constants of mononuclear complexes
has aroused steadily growing interest in the last 25 years. Many of these
studies have been undertaken in accordance with the method published in
1941 by J. Bjerrum, ‘“Metal Ammine Formation in Aqueous Solution’.!
J. Bjerrum’s studies have given rise to many related methods. Sillén’s 2
fundamental work on polynuclear complexes is not treated in the present
paper, which deals with mononuclear complexes.

When it is possible to determine the concentration of free metal ion, e.g.
by potentiometric measurements, extrapolation methods as described by
Leden ® and Fronzus ¢ are convenient. Considering a system with the mono-
nuclear complexes MX, MX,, MX,....... , MX,,, the over-all stability constants

are: -
P i I
A= poxT 1)
The total concentration of metal ions is
N
O = [M] + 3, [MX] @
and of the ligand,
Cx = [X] + 3i [MX]] 3
From eqns. (1) and (2):
%ﬁ;—[[xl\% = F([X]) = B, + B[ X] + - By[X]V 1 )
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Knowledge of the function F, ([X]) enables one to determine all the successive
stability constants.

According to Leden? F, ([X]) is plotted vs. [X], and extrapolating to
{X] = 0, the stability constant B, is determined. The subtraction of g; from
F, ([X]) and division by [X] enables one to determine §, by a new extrapola-
tion, efc. Successive approximations may be used in the determination of
the free ligand concentration.

The most frequently used methods of calculating stability constants
from experimentally obtained data are based on the “formation function” 7.
This function is defined as the average number of ligands X bound to each
central group M (e.g. metal). The step stability constants are

o MX) _ B
Ki=x1x o7 = B (5)
and the formation function % is
_ Ox—[X] 2iMX;]
S0, T M+ X oo
ﬁ'z K, [X] 4 2K, K, [X}? + ... + NK.K,.. K[ X]¥ (6a)
1 4 K [X] 4+ K, KX+ ...K,K,...Ky[ XV
By plotting = vs —log[X], the ‘“formation curve’ is obtained.
(X1 _
As X (X)) =] gy XD =1+ AIX] + AIXP + . BIXI ()

0

an extrapolation method very similar to the one proposed by Leden (see eqn.
(1)) may be applied to determine the successive stability constants.® The
method may be extended for use with mixed complexes.

Graphical methods are frequently used. For example, if N = 2 the fol-
lowing expression is represented by a straight line:

n . (2—n)[X]
(n —1) [X] (n— 1)
with the slope K, X K, and the intercept —K,. These constants may thus
be found by the “method of least squares”.

According to J. Bjerrum,! the formation function may be rewritten from
eqn. 6 as follows:

x K\K,— K, (8)

N

3 (i—n) [X]p, = 0 ©)
Each point on the formation curve providesin principle an equation to determine
the constants, and it is thus possible to determine all the stability constants
from N different points on the curve. Such calculations are very tedious when
N is large, and the points on the formation curve selected for these calculations
may be inconsistent. Bjerrum has therefore proposed approximation methods
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in the calculations. Two methods are applicable. The first method makes
use of the concentration of ligand at # = N/2 and the slope of the formation
curve at 7 = N/2 to determine the constants. The second method utilizes the
fact that in solutions with # = n — 15, the concentrations of the complexes
MX,_; and MX, are equal when the stability constants are so widely different
that only these two complexes are present in appreciable concentrations.
This makes a determination of the constants possible, since

K, = [X]Genp (10)

may be taken as the approximate constant.

The first method is preferred when K, and K,,, are nearby equal, the
second one is applicable only when K,>>K,,;, as no interaction with
other complexes occurs in that case. With the ratio K,/K,.1>10* the con-
stants found from the last method may be used without correction; for lower
ratios the true constants are found by multiplying the approximate ones by
correction factors. When the preliminary constants are known, the correction

term is found from eqn. 9: n—1
1 +21 (1 + 2t)/[X}-K,....K;

1
K =
! [XFs=n—1s2

- (11)
145 (420 XY Kupro Ko

For example for N = 2:

1 1
K, = . (12)
! [Xli=1zg 14 3K [XJz-1pe

and
1 3
Xls-az (1 + K [X) =32 ) (13)

Rough knowledge of K, and K, enables one to refine the values by means of
successive approximations. If the constants are not too close together these
equations yield correction factors of unity after very few cycles.

Ky, =

Table 1. Stability constants found from ‘half 7 values” and refined by successive approximations
until the ratio of the values obtained between two cycles did not exceed 0.001.

No. of Starting values “refined”’ “true’’

cycles | [XJn=y, |[XIr=, | [XIn=1,

neces- | X 10° x 10° | [XTa=1 | K,° K,° K K K,| K,

sary X107 | x 107 ' 2 %X 1078| x 107
4 0.125 1.000 8.000 | 8.000 | 1.000 | 5.000 x 10% | 1.600 x 10° (5.000 | 1.600
5 0.143 1.000 7.000 | 7.000 | 1.000 | 4.000 x 10¢| 1.750 x 10° [4.000 | 1.724
5 0.167 1.000 6.000 6.000 | 1.000 | 3.001 x 10°| 2.000 x 10°|2.980 | 2.010
7 0.200 1.000 5.000 5.000 | 1.000 | 2.001 x 10%| 2.500 x 10°|2.000 | 2.500
11 0.250 1.000 4.000 | 4.000 | 1.000 | 1.001 x 10° | 3.997 x 10° |1.000 | 4.000
17 0.286 1.000 3.500 3.500 | 1.000 | 5.013 x 10%| 6.984 x 10° |0.4960 | 7.040

998 0.333 1.000 3.000 3.000 | 1.000 | 1.499 x 10% | 2.003 x 10° |0 [ee)
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Fig. 1. Formation curves for systems with N = 2. The curves represent systems with
= 1.00 X 10* X rand K, = 1.00 x 10

A computer programme was set up to make such refinements. The cycles
were repeated until the ratio of the values in two succeeding cycles was lower
than 0.001 for all the constants. This corresponds to deviations much lower
than those due to experimental errors. The calculations were tested in case
of N = 2. The [X]; =12 ; [X]s = 32, ratio was first eight; with successive decreases
in the ratio, the results were as is given in Table 1. When the ratio is small
many cycles are necessary and erroneous results may be obtained even in the
case when the ratio of the constants obtained from one cycle to another is
very small.

A direct expression for the convergence value of the successive approxi-
mations is easily found directly from (6a), and from the refinement formulas
12 and 13:

_ [Xlsi-—se — 3[X]s=12 1 . 3
= X Kreor Ko Xlhom (14)
and
1
K= [XT;-on — 3(XI5-1n (15)

In Fig. 1, n is plotted vs. —log [X] for systems with N = 2. In all examples
given, K, is 1.00 X 10%, and the curves represent plots where the ratio K,/K,
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Table 2. Step stability constants found from the 7 plots in Fig. 1.

log K° = —log [X] log K found theoretical

n=05| n=15 log K, log K, log K, log K, r
4.00 3.40 3.39 4.01 3.40 4.00 0.25
4.18 3.53 3.70 4.01 3.70 4.00 0.50
4.29 3.59 3.89 3.99 3.88 4.00 0.756
4.37 3.64 4.01 4.00 4.00 4.00 1.00
4.69 3.79 4.48 4.00 4.48 4.00 3.00
4.77 3.83 4.59 4.01 4.60 4.00 4.00
4.85 3.85 4.70 4.00 4.70 4.00 5.00
4.91 3.86 4.78 3.99 4.78 4.00 6.00
4.97 3.88 4.85 4.00 4.85 4.00 7.00
5.10 3.91 5.01 4.00 5.00 4.00 10.00
5.52 3.97 5.48 4.01 5.48 4.00 30.00
6.01 3.98 6.00 3.99 6.00 4.00 100

= r) is between 0.25 and 100. The theoretical K, is therefore 1.00 X 10* x r.
Table 2 shows the values calculated, first by means of the “half # method”,
by refinements with (12) and (13), and then directly with (14) and (15). The
direct method is applicable independent of the ratio K,°/K,°.

Conditions for the divergence of the convergemce formulas. A correction
chart is given in Fig. 2. If [X]; - 32 < 3[X]; =12 (which is never the case),
then K, < 0, which corresponds to divergence when formulas 14 and 15 are
used. The chart or formulas 14 and 15, show that the preliminary constants
are always separated to a ratio higher than 3, that is to a difference in the

Fig. 2. Nomogram for correction of the
preliminary stability constants found with
the “half 7 method” for systems with
N = 2. Log K, is found on scale B when
a straight line is drawn between log K,
on scale A and log K,° at scale C. Log K,
is then found on scale C at the intersection
between the straight line from log K,°
on scale B and through the intersecting
point of L. and the line used in the deter-
mination of log K,. For constants of
inconvenient magnitude, equal values may
be subtracted on all scales. Example,
log K,° = 4.10 and log K,° = 3.33. The
intersection between scale B and the line
from (3.33 —2) on A and (4.10 —2) on C
gives log K, = 3.66 (or 1.66 + 2) on scale
B. The other line on the figure from (3.33
—2)on Bgiveslog K, = 3.79 (or 1.79 + 2)
on scale C.
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logarithmic values of the preliminary constants larger than log 3 = 0.4771.
This is in contrast to the value 0.4343 reported by Le Grand et al.’ supposably
found from successive approximations. The corrections always make the ratio
of the true constants lower than the ratio of the preliminary ones. With an

initial ratio of 3.5 4+ 1/ 3.25 = 5.3, the step stability constants become identical.

Systems with N > 2. The “extended » method’ is also applicable to systems
with greater complexity than N = 2.

In the general case, N points on the formation curve may be used with
n =1y, 3/y, 8/5.. N —1/,. The corresponding 7 and [X] values are inserted
into (9) which gives N equations for the N unknown gy (or K,).

From the determinant

+[X]5 =12 +3[XP 51 +5[XPs-1p
—[X]- = X12- = 2AXPB- _
D, — [X]5=32 +[XP 5 =32 F2[XP5 =30 (16)
—3[X]5 =35 —[XP5-5pe HXP5-s2

new determinants are made by substituting the numbers: 1 3 5 7 ...(2N — 1)
in column No. i. These determinants are symbolized by D,. The step stability
constants are then given by

Ki = Di/Di—l (17)

When N = 2, eqn. 17 gives K, and K, according to eqns. 14 and 15. The
formula above enables one to determine the constants directly, but due to
experimental errors, the values thus obtained will not be of the highest accuracy.
It is preferable to recalculate the constants by means of eqn. 9 using [X]
values which correspond to K,™, and the # from the experimentally obtained
formation curve. The values may be recalculated if necessary with the [X]
taken to be the new K, and corresponding #, and so on.

The method is thus based on calculation of determinants. For example:
When N = 4, five 4 X 4 determinants have to be calculated which is easily
programmed for a digital computer, and the calculations, even for N = 15,
are done in few seconds on the Danish GIER computer used by the author.
The programme is given in Table 3. After the input of the programme, the
number of constants N, followed by the decreasing [X]; - 12 values, is written
on the typewriter, and the constants are written out by the machine. The
n values corresponding to concentrations equal to the reciprocal of the con-
stants have then to be written down, and so on.

DISCUSSION

The present method for determining stability constants has the advantage
of being very easy to perform, and of requiring no successive refinements.
The recalculation of the constants makes optimal conditions possible since
values are used which make

02K,
on, o[ X1s; =0 (18)
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Table 3. Computer programme in Gier Algol for correction of preliminary step stability

constants and recalculation at optimal experimental conditions. (The Danish expres-

sions “tromleplads”, “til tromle” and “fra tromle” are drum procedures; ¢tast’ is

the input procedure; ‘““tryk”, “trykvr”, ¢“tryktekst”’, “trykml’” and the corresponding
“skriv”’ expressions are output procedures.)

begin integer N; N: = tast; begin array M[L:N, 1:N], L[1:N], K[1:N], R[1:N], D[0:N];
integer q, n; real procedure Det(A); array A; begin integer p, i, j, k, imax;

real Diag, DP,S; p: = tromleplads; til tromle(A); S: = 1; for k: = 1 step 1 until N do
begin Diag: = abs(A[k,k]); imax: = k; for i: = k + 1 step 1 until N do

begin ¢f abs (Ali,k]) > Diag then begin Diag: = abs (A[ik]); imax: = i; end; end;

tf imax * k then begin for 1: = k step 1 until N do begin DP: = Alk,i];

Alk,i]: = Alimax, i]; A[imax,i]: = DP;end S: = —8; end; Diag: = A[k,k]; S: = S X Diag;
if Diag = 0 then go to OUT; for i: = k + 1 step 1 until N do A[k,i]: = A[k,i]/Diag;

for i: = k + 1 step 1 until N do begin DP: = A[i,k]; of DP % O then for j: =k 4+ 1
step 1 until N do A[Lj]: = A[i,j] — DP XA[k,j]; end; end; OUT: tromleplads: = p;
fra tromle(A); tromleplads: = p; Det: = S; end of Det; trykvr; for n: = 1 step 1
until N do begin L[n]: = 2 x n—1; skrvvr; skrvtekst(x < —logX = %); K[n]: = 10 ¢
(-tast); end; for n: = 1 step 1 until N do for q: = 1 step 1 until N do M[n,q]: = (2X
(n—q) + 1) x (K[q]4n); om: D[0]: = Det(M); for n: = 1step 1 until N do begin

for q: = 1 step 1 until N do begin R[q]: = M[n,q]; M[n,q]: = L[q]; end

D[n]: = Det(M); for q: = 1 step 1 until N do M[n,q): = R[q]; end; for n: = 1

step 1 until N do R[n):=D[n]/D[n—1]; trykvr; tryktekst (<X <CONST. WITH x£);
tryktekst(x < WITHOUT CORRECTIONSX); trykvr; for n: = 1 step 1 until N do
begin tryktekst( <k>$); tryk (Xdd>$, n); tryktekst(X < = %);

tryk(¥xd.ddd,, + dd>%, 1/K[n], trykml(4), R[n], trykvr); skrvvr; skrv (xdd.ddd>§,
0.434294 X In(R[n])); end; tryktekst(X <NEW CORRECTIONSX%); trykvr; skrvvr;
for q: = 1 step 1 until N do L[q]: = tast; if L[1]<0 then go to stop;

for n: = 1 step 1 until N do for q: = 1 step 1 untzl N do M[n,q]: =

(n-L[q]) X (1/R[q]) 4 n; go to om; stop; end, end;

The author has not yet succeeded in proving the assumption that eqn.
18 gives [X]; = 1/K! for systems with N>2 but has verified it numerically
for a system with N = 7. The step stability constants were taken as known
and the formation function was calculated. To the % found, 4n = 0.01 was
added and K, was recalculated with the other constants fixed. Then 4K3/4n
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Fig. 3. Plots of AK,/A% (full line) vs. [X] % | 24
for a system with N = 7, and step stability fl
constants (from K, to K,): 2 x 10%, 62
2.5 x 10° 1.8 x 108, 3.6 x 107, 1.0 x 108, | s 22
1.2 X 10° and 1.5 X 10%. The dotted line -
is the formation function. The K, is then o [/
regarded as a variable and A4K,/4% is / 8
calculated and is represented by the solid L' 'Il I/['X]): ,0, Ly - 20
line. (4% is 0.01 in these calculations). The
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108, 10
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was calculated and plotted vs. [X]. The value of [X] which minimized this
function, corresponded with eqn. 18. As found from Fig. 3, [X]s, = 1/Kj.

The described method has been tested experimentally by determination of
the acid dissociation constants of some polyaminepolycarboxylic acids. The
results will be presented in a separate communication.

This method has the disadvantage that only a limited number of the
experimental data is used in the calculations, even though the sets of data
which give the best results are selected. But the advantage is that with N
not too high, the calculation work may be done in a reasonable time without
making use of a computer. If a high speed computer is available, methods
using all the experimental data may be performed to obtain the best possible
values and the standard deviations for the constants.
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