Bromo-Complexes of Lead (II)

Lennart Nilsson* and G. P. Haight, Jr.**

Chemistry Department of Swarthmore College, Swarthmore, Pennsylvania, U.S.A.

The solubility of PbSO₄ at [Br⁻] < 0.32 M and the solubility of (CH₃)₄NBr at 0.48 M < [Br⁻] < 4.0 M have been measured in 4.00 M [HBr + H₂SO₄] at 25.0°C. The data are consistent with the existence of Pb²⁺, PbBr⁺, PbBr₂, PbBr₃²⁺, and PbBr₄²⁻ in solution.

The step formation constants at 25.0°C are $K_1 = 11.7 \text{ M}^{-1}$, $K_2 = 13.4 \text{ M}^{-1}$, $K_3K_4 = 17.0 \text{ M}^{-2}$, $K_4K_5 = 0.278 \text{ M}^{-4}$.

Except for one polarographic study,¹ information on the complexes PbBr₂⁻⁻⁻ is largely confined to values for the formation constant of PbBr⁺ in various media.² The fact that the solubility of PbBr₂ in water is less than that of PbCl₂ while in 4 M HBr, PbBr₂ gives 0.5 M solutions while PbCl₂ is only 0.012 M in 4 M HCl, suggests that higher bromide complexes exist and are more stable than higher chloride complexes.

The solubility of slightly soluble lead salts has been measured as a function of bromide ion concentration in 4 M [H₂SO₄ + HBr]. The results have been interpreted using the assumption that H₂SO₄ is 1:1 electrolyte.³ Effects of changing [Br⁻], [(CH₃)₄N⁺], and [Na⁺] on the UV absorption spectrum of the Pb(II)-Br⁻ system are also reported.

EXPERIMENTAL

PbBr₂ is too soluble at high [Br⁻] to be useful. (CH₃)₄NBr was chosen to obtain reasonably low solubility at [Br⁻] = 4 M. When using this salt it is not possible to use perchloric acid to maintain constant ionic strength due to the low solubility of (CH₃)₄NCIO₄. Sulphuric acid was used instead but the concentration of the sulphuric acid is restricted to a maximum concentration of 3.52 M above which (CH₃)₄NBr₂⁻ is converted to PbSO₄.

The procedure followed was to measure the solubility of PbSO₄ in 4 M [H₂SO₄ + HBr] for [Br⁻] < 0.32 M and to measure the solubility of (CH₃)₄NBr in 4 M [H₂SO₄ + HBr] for [Br⁻] > 0.48 M. It was observed that PbBr₂ in contact with HBr was very sensitive to daylight and UV radiation, free lead being formed on the surface of PbBr₂ crystals. No such effect is observed with (CH₃)₄NBr₂⁻.

* Present address: University of Lund, Lund, Sweden.
** Present address: Texas A & M University, College Station, Texas.

Solubilities were measured with the aid of a Brønsted saturator \(^4\) or by shaking salt and solvent in a thermostat for 24–48 h. Saturated solutions were analyzed for total Pb(II) by diluting a sample until \(10^{-8} \text{ M} < [\text{Pb(II)}] < 10^{-4} \text{ M}\) with solutions which gave a final \([\text{HBr}] = 4.00 \text{ M}\). The absorbance of the diluted solutions was measured at 25° + 0.5° with a Beckman DU spectrophotometer using \(\varepsilon = 14,770 \text{ cm}^{-1} \text{ M}^{-1}\) at 303 mp. Beer's law is obeyed, but since solutions contain equilibrium mixtures of various \(\text{PbBr}_n\) complexes, great care was taken to control the temperature and to make \([\text{Br}^-]\) exactly 4.00 M. Data points were duplicated by varying the number of passes through the saturator as tests of saturation.

\(\text{PbSO}_4\) was recrystallized from conc. \(\text{H}_2\text{SO}_4\) by adding water. All samples were too fine for convenient use and tended to clog the Brønsted saturator.

\((\text{CH}_3)_2\text{NBr}\) was precipitated by adding saturated \((\text{CH}_3)_2\text{NBr}\) slowly to a 0.5 M solution of \(\text{PbBr}_4\) in 6 M HBr. White, hexagonal crystals form which may be dissolved in hot hydrobromic acid and recrystallized on cooling. (Found: C 9.36; H 2.25; Br 45.81. Calc. C 9.22; H 2.32; Br 46.01). Carbon and hydrogen analyses were by the Clark Microanalytical Laboratory. Bromine was determined by a potentiometric titration of \(\text{Br}^-\) with a standardized \(\text{AgNO}_3\) solution.

4 M HBr stock solution was constantly monitored for \(\text{Br}_2^-\) formation, by reading the absorbance versus a \(\text{H}_2\text{O}\)-blank.

Mixed solvents were prepared immediately before use to reduce possibilities of oxidation of \(\text{Br}^-\). Spectra changed slightly with time, especially the UV cutoff at \(\approx 240 \text{ m}\), but blanks at 303 mp were sensibly zero throughout the study. 4 M HBr and 4 M \(\text{H}_2\text{SO}_4\) stock solutions were prepared from analytical grade reagents and standardized against anhydrous sodium carbonate.

The effects of substituting \((\text{CH}_3)_2\text{N}^+\) for \(\text{H}^+\) and \(\text{Na}^+\) for \(\text{H}^+\) at constant \([\text{Br}^-]\) on the spectrum of \(\text{PbBr}_4\) and \(\text{PbBr}_2\) were determined in an effort to detect possible on pair formation.

RESULTS

The results of the solubility studies are pictured graphically in Figs. 1 and 2. The break in the curve for \((\text{CH}_3)_2\text{NBr}\) corresponds to partial conversion of this salt to \(\text{PbSO}_4\) at low \([\text{Br}^-]\). Only data to the right of the break were used in calculating constants.

\(\text{PbSO}_4\). Assuming only mononuclear species the equations for analysis of the \(\text{PbSO}_4\) curve are:

\[
S[\text{HSO}_4^-] = K_s \left(1 + \sum_{n=1}^{N} \beta_n [\text{Br}^-]^n\right) \tag{1}
\]

![Fig. 1. Solubility of \(\text{PbSO}_4\) vs. \([\text{Br}^-]\) in 4.00 M [HBr+\(\text{H}_2\text{SO}_4\).](image)

![Fig. 2. Solubility of \((\text{CH}_3)_2\text{NBr}\) vs. \([\text{Br}^-]\) in 4.00 M [HBr+\(\text{H}_2\text{SO}_4\).](image)

Acta Chem. Scand. 20 (1966) No. 2
Remembering that the derivative \(\frac{d[\text{HSO}_4^-]}{d[\text{Br}^-]} = -1\) we obtain eqns. 2 and 3

\[
[\text{Br}^-] = [\text{Br}^-]_0 \left(1 + \frac{dS}{d[\text{Br}^-]} - \frac{S}{[\text{HSO}_4^-]}
ight)
\]

\[
\bar{n} = \frac{[\text{Br}^-]}{S} \frac{dS}{d[\text{Br}^-]} - \frac{[\text{Br}^-]}{[\text{HSO}_4^-]}
\]

where

\(S = \text{solubility of PbSO}_4 \text{ in M,}\)

\([\text{Br}^-]_0 = \text{concentration of Br}^- \text{ in the solvent which had not passed the saturator.}\)

\(K_s = [\text{Pb}^{2+}] [\text{HSO}_4^-]\)

\(\bar{n} = \text{ligand number}\)

\(\beta_n = [\text{PbBr}_n^{2-n}]/[\text{Pb}^{2+}] [\text{Br}^-]^n = \prod_0^n K_n\)

\(K_s = [\text{PbBr}_n^{2-n}]/[\text{PbBr}_{n-1}^{3-n}] [\text{Br}^-]\)

\(K_s = S [\text{HSO}_4^-]\) when no bromide was present.

The first set of approximative values of the formation constants was obtained by plotting \(S [\text{HSO}_4^-] - K_s vs. [\text{Br}^-]\), where \([\text{Br}^-]\) originates from eqn. 2. This plot gives \(K_s \beta_1\) as a slope for a straight line formed by the first points of the curve. Using this value of \(K_s \beta_1\), the quantity \(S [\text{HSO}_4^-] - K_s - K_s \beta_1 [\text{Br}^-]\) was plotted vs. \([\text{Br}^-]^2\) to give \(K_s \beta_2\) as a slope. This procedure was repeated until a complete set of preliminary values of \(\beta_n\) was obtained. The constants \(\beta_n\) then were recalculated until, as in Fig. 3, straight lines through the origin were obtained for all plots.

Table 1. Solubility of PbSO₄.

<table>
<thead>
<tr>
<th>([\text{Br}^-])</th>
<th>(S[\text{HSO}_4^-] \times 10^4)</th>
<th>(S[\text{HSO}_4^-] \times 10^4)</th>
<th>([\text{Br}^-])</th>
<th>(S[\text{HSO}_4^-] \times 10^4)</th>
<th>(S[\text{HSO}_4^-] \times 10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>calc</td>
<td>(M^a)</td>
<td>obs</td>
<td>(M)</td>
<td>calc</td>
</tr>
<tr>
<td>0.000</td>
<td>5.06</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td>5.30</td>
<td>5.44</td>
<td>0.120</td>
<td>26.44</td>
<td>26.46</td>
</tr>
<tr>
<td>0.008</td>
<td>5.54</td>
<td>5.71</td>
<td>0.160</td>
<td>43.8</td>
<td>43.8</td>
</tr>
<tr>
<td>0.040</td>
<td>8.74</td>
<td>8.75</td>
<td>0.200</td>
<td>70.6</td>
<td>70.6</td>
</tr>
<tr>
<td>0.080</td>
<td>15.45</td>
<td>15.41</td>
<td>0.239</td>
<td>109.4</td>
<td>109.8</td>
</tr>
<tr>
<td>0.100</td>
<td>20.30</td>
<td>20.28</td>
<td>0.318</td>
<td>246.2</td>
<td>246.6</td>
</tr>
</tbody>
</table>

Table 1 shows how well the calculated values of \(S\) agree with the experimental determinations. It was not possible to evaluate a value of \(\beta_6\) but the best fit was nevertheless obtained if \(\beta_6 = 742 M^{-6}\) (cf. p. 490) was introduced. At \([\text{Br}^-] = 0.3 M\) the term \(K_s \beta_6 [\text{Br}^-]^6\) contributed \(\approx 2\%\) to the sum \(K_s (1 + \sum_{n=1}^N \beta_n [\text{Br}^-]^n)\). [Br\(^-\)] was sensibly \([\text{Br}^-]_0\) for all points. Thus using the calculated values of the constants \(\beta_n\) eqn. 1 is found to be

\[S \text{[HSO}_4] = 5.06 \times 10^{-5} \times (1 + 11.7[Br^-] + 157[Br^-]^2 + 2670[Br^-]^3 + 742[Br^-]^4) \times 10^{-5} \]
\[K_s = (5.06 \pm 10.0) \times 10^{-5} \text{M}^2 \]
\[K_s\beta_1 = 11.7 \pm 0.5 \text{M}^{-1} \]
\[K_s\beta_2 = 13.4 \pm 0.5 \text{M}^{-1} \]
\[K_s\beta_3 = 17.0 \pm 0.8 \text{M}^{-2} \]
\[\beta_1 = 11.7 \pm 0.5 \text{M}^{-1} \]
\[\beta_2 = 157 \pm 6 \text{M}^{-2} \]
\[\beta_3 = (2.67 \pm 0.11) \times 10^3 \text{M}^{-4} \]

Fig. 3. \(x, S\text{[HSO}_4] - K_s(1 + \beta_4[Br^-]^4) \) vs. \([Br^-]\).
\(\cdot, S\text{[HSO}_4] - K_s(1 + \beta_1[Br^-]^4) \) vs. \([Br^-]^4\).
\(\circ, S\text{[HSO}_4] - K_s(1 + \beta_2[Br^-]^3) \) vs. \([Br^-]^3\).

Fig. 4. \(x, S^3 - K'_s(\beta_1[Br^-] + \beta_4[Br^-]^4) \) vs. \([Br^-]^{-1}\).
\(\cdot, S^3 - K'_s(\beta_2[Br^-]^3 + \beta_4[Br^-]^4) \) vs. \([Br^-]^4\).

\((\text{CH}_3)_4NPBr_3\). The working equations for this salt are:

\[S^2 = \frac{K_s'}{[Br^-]^3} (1 + \sum_{n=1}^{N} \beta_n[Br^-]^n) \]
(1a)

\[[Br^-] = [Br^-]_0 \left/ \left(1 + 2 \frac{dS}{d[Br^-]} \right) \right. \]
(2a)

\[\bar{n} = 3 + \frac{2[Br^-]}{S} \frac{dS}{d[Br^-]} \]
(3a)

where \(K'_s = [(\text{CH}_3)_4N^+] [Pb^{4+}] [Br^-]^3 \) and other terms have the same meaning as before. The data were analyzed in the same way as for PbSO\(_4\) although it was here more suitable to start by plotting \(S^2 \) vs. \([Br^-]^3\) which gives a preliminary value of \(\beta_2 \). The final plots are shown in Fig. 4.

Over this region of \([Br^-]\), the dominant change is formation of PbBr\(_6^{-}\). Scatter is observed in the plot vs. \([Br^-]\), which gives \(K'_s \beta_4 \) as a slope, where PbBr\(_6^{-}\) is the dominant species. The presence of PbBr\(_2\) in solution is barely felt before \((\text{CH}_3)_4NPBr_3\) is converted to PbSO\(_4\) as evidenced by the bad scatter of the plot vs. \([Br^-]^{-1}\). The plots give the following form to eqn. 1a

\[S^2 = (0.352[Br^-]^{-1} + 6.11[Br^-] + 1.701[Br^-]^3) \times 10^{-5} \]
from which

\[K_3K_4 = 17.4 \pm 0.6 \text{ M}^{-2} \text{ and } K_5K_6 = 0.278 \pm 0.006 \text{ M}^{-2} \]

From the combined studies

\[
\begin{align*}
\beta_1 &= 11.7 \pm 0.5 \text{ M}^{-1} & K_s &= (5.06 \pm 0.10) \times 10^{-5} \text{ M}^2 \\
\beta_5 &= 157 \pm 6 \text{ M}^{-2} & K_s' &= (3.0 \pm 0.2) \times 10^{-8} \text{ M}^6 \\
\beta_6 &= (2.67 \pm 0.11) \times 10^5 \text{ M}^{-4} & & \\
\beta_6' &= (7.4 \pm 0.4) \times 10^2 \text{ M}^{-6} & &
\end{align*}
\]

Table 2. Solubility of \((\text{CH}_4)\text{NPbBr}_5\).

<table>
<thead>
<tr>
<th>([\text{Br}^-]_a) M</th>
<th>(10^5S_{\text{calc}}) M</th>
<th>(10^5S_{\text{obs}}) M</th>
<th>([\text{Br}^-]_a) M</th>
<th>(10^5S_{\text{calc}}) M</th>
<th>(10^5S_{\text{obs}}) M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>1.96</td>
<td>1.97</td>
<td>2.56</td>
<td>6.61</td>
<td>6.61</td>
</tr>
<tr>
<td>0.64</td>
<td>2.21</td>
<td>2.21</td>
<td>2.72</td>
<td>7.09</td>
<td>7.09</td>
</tr>
<tr>
<td>0.80</td>
<td>2.49</td>
<td>2.48</td>
<td>2.88</td>
<td>7.58</td>
<td>7.53</td>
</tr>
<tr>
<td>0.96</td>
<td>2.74</td>
<td>2.78</td>
<td>3.04</td>
<td>8.08</td>
<td>8.01</td>
</tr>
<tr>
<td>1.12</td>
<td>3.05</td>
<td>3.05</td>
<td>3.20</td>
<td>8.61</td>
<td>8.58</td>
</tr>
<tr>
<td>1.44</td>
<td>3.74</td>
<td>3.74</td>
<td>3.36</td>
<td>9.15</td>
<td>9.13</td>
</tr>
<tr>
<td>1.60</td>
<td>4.10</td>
<td>4.13</td>
<td>3.52</td>
<td>9.70</td>
<td>9.65</td>
</tr>
<tr>
<td>1.92</td>
<td>4.87</td>
<td>4.91</td>
<td>3.68</td>
<td>10.27</td>
<td>10.24</td>
</tr>
<tr>
<td>2.24</td>
<td>5.71</td>
<td>5.71</td>
<td>3.84</td>
<td>10.84</td>
<td>10.84</td>
</tr>
<tr>
<td>2.40</td>
<td>6.13</td>
<td>6.14</td>
<td>4.00</td>
<td>11.43</td>
<td>11.43</td>
</tr>
</tbody>
</table>

\(a\) \([\text{Br}^-]\) < 0.8 lower

The agreement on \(K_3K_4\) for the two salts is gratifying. Table 2 shows how well solubility calculated using the constants given, agree with observed solubilities. Fig. 5 shows the regions of existence of various \(\text{PbBr}_{2-n}^{2-n}\) complexes.

Fig. 5. Regions of existence of \(\text{PbBr}_{2-n}^{2-n}\) complexes in 4.00 M \([\text{HBr} + \text{H}_2\text{SO}_4]\).

Fig. 6. UV absorption spectra of \(5.00 \times 10^{-4}\) M \(\text{Pb(II)}\) in a. 8.7 M \(\text{HBr}\) b. 4.00 M \(\text{HBr}\) c. 2.00 M \(\text{HBr} + 2.00\) M \(\text{HClO}_4\).

Spectra. In Fig. 6 the effect of [Br\(^-\)] on the Pb(II) spectrum is observed. The curve with the highest peak is probably the PbBr\(_6\) \(^4^-\) spectrum unless complexes of \(n > 6\) are formed. The peak is at 305 m\(\mu\) where the molar absorbance (\(\varepsilon\)) is 20,750 cm\(^{-1}\) M\(^{-1}\). PbCl\(_6\) \(^4^-\) has a peak at 272 m\(\mu\) and \(\varepsilon = 14,910\) cm\(^{-1}\) M\(^{-1}\). Since no isobestic point was observed for [Br\(^-\)] \(< 4.0\) M it is obvious that more than 2 complex species play an important part. For such a case the present data were not considered accurate enough to allow the evaluation of equilibrium constants. Spectra of PbBr\(_n\) \(^{2-n}\) of low \(n\) are inaccessible because of the opacity of Br\(^-\) in solution at \(\lambda < 250\) m\(\mu\).

![Image](image)

Fig. 7. UV absorption spectra of \(5.00 \times 10^{-5}\) M Pb(II) in (a) 3.52 M [HBr + (CH\(_3\))\(_3\)NBr]. Molarity of (CH\(_3\))\(_3\)N\(^+\): a. 0.00; b. 0.48; c. 0.80; d. 1.20.

The effect on the PbBr\(_6\) \(^4^-\) — PbBr\(_8\) \(^4^-\) spectrum of substituting (CH\(_3\))\(_4\)N\(^+\) and Na\(^+\) for H\(^+\) is shown in Figs. 7 and 8. Neither change is consistent with a change in activity of Br\(^-\) alone. The spectral shifts are very small indicating that ion pair formation is very slight or else has little effect on the spectrum or both. The shift on adding (CH\(_3\))\(_4\)N\(^+\) is compatible with the formation of the pair [(CH\(_3\))\(_4\)NPbBr\(_8\) \(^{3-}\)] with a formation constant of 0.1. The fact that (CH\(_3\))\(_4\)N\(^+\) has no effect on BiBr\(_6\) \(^3-\) spectra suggests that ion pair formation between (CH\(_3\))\(_4\)N\(^+\) and large anions is negligible in solutions of high ionic strength unless the charge on the anion is 4 or more.

Table 3. Comparison of the formation constants of the Pb-Br system.

<table>
<thead>
<tr>
<th>Medium</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(K_3)</th>
<th>(K_4)</th>
<th>(K_5)</th>
<th>(K_6)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 M [HBr + H(_2)SO(_4)]</td>
<td>11.7</td>
<td>13.4</td>
<td>17.0</td>
<td>0.278</td>
<td></td>
<td></td>
<td>this work</td>
</tr>
<tr>
<td>4 M [LiBr + LiClO(_4)]</td>
<td>35</td>
<td>13</td>
<td>4.5</td>
<td>2.9</td>
<td>0.05</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>4 M [NaBr + NaClO(_4)]</td>
<td>32</td>
<td>9.6</td>
<td>6.0</td>
<td>1.1</td>
<td>1.0</td>
<td>—</td>
<td>11</td>
</tr>
<tr>
<td>1 M [NaBr + NaClO(_4)]</td>
<td>13</td>
<td>2.1</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

DISCUSSION

Kivalo \(^1\) finds \(\beta_1 = 13.0\), \(\beta_2 = 27\), and \(\beta_3 = 153\) in 1 M (NaBr + NaClO\(_4\)) using polarographic techniques. If both studies are accurate, changing from 1 M Na\(^+\) to 4 M H\(^+\) profoundly affects the distribution of PbBr\(_2^\text{-n}\) complexes. \(\beta_1\) at zero ionic strength has been found to be 56 by spectrophotometric analysis.\(^5\) Later published studies, a potentiometric investigation\(^10\) in 4 M [LiClO\(_4\) + LiBr] using a lead-amalgam electrode and a solubility study\(^11\) in 4 M [NaClO\(_4\) + NaBr] are more in agreement with this work as far as the constants \(K_2\), \(K_3\) and \(K_4\) are concerned. A comparison of the data is shown in Table 3.

Table 4. Comparison of formation constants.

<table>
<thead>
<tr>
<th>Species</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(K_3)</th>
<th>(K_4)</th>
<th>(K_5)</th>
<th>(K_6)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbBr(_2^\text{-n})</td>
<td>11.7</td>
<td>13.4</td>
<td>17.0</td>
<td>0.278</td>
<td></td>
<td></td>
<td>this work</td>
</tr>
<tr>
<td>PbCl(_2^\text{-n})</td>
<td>10</td>
<td>29</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>SnBr(_2^\text{-n})</td>
<td>?</td>
<td>8</td>
<td></td>
<td>2.1?</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>SnCl(_2^\text{-n})</td>
<td>28</td>
<td>8</td>
<td>1.0</td>
<td>0.7</td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

\(\text{[Li}^+\text{]} = 4.0\ M\)

<table>
<thead>
<tr>
<th>Species</th>
<th>(K_1)</th>
<th>(K_2)</th>
<th>(K_3)</th>
<th>(K_4)</th>
<th>(K_5)</th>
<th>(K_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbBr(_2^\text{-n})</td>
<td>35</td>
<td>13</td>
<td>4.5</td>
<td>2.9</td>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>PbCl(_2^\text{-n})</td>
<td>17</td>
<td>3.1</td>
<td>2.3</td>
<td>0.17</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 compares formation of PbBr\(_2^\text{-n}\) with PbCl\(_2^\text{-n}\) and with SnCl\(_2^\text{-n}\) and SnBr\(_2^\text{-n}\). Chloride and bromide complexes of low \(n\) are comparable in stability with \(\beta_2\) for chloride slightly higher than \(\beta_2\) for bromide. It might be worthwhile to consider that other investigations\(^{10,12}\) show an opposite trend with \(\beta_2\) for bromide higher than \(\beta_2\) for chloride. For \(n > 2\) the bromide complexes are decidedly stronger. This indicates that covalent effects predominate for complexes of negative charge while electrostatic effects predominate for complexes which are positive or neutral. The smaller, harder, Sn\(_2^+\) ion combines more strongly with one or two halides than does Pb\(_2^+\) but is less inclined to form complexes of negative charge. The shift of the UV band of PbBr\(_6^{4-}\) to higher wavelengths than that observed for PbCl\(_6^{4-}\) is consistent with the greater covalent character of bromide as compared with the chloride complexes. The relative instability of negative complex ions of odd \(n\) is notable.

This work was supported by a grant from the National Science Foundation. The spectrophotometer used is on loan from the Office of Ordnance Research, U.S. Army. (CH\(_3\))\(_3\)NPbBr\(_3\) was first prepared by John Zoltewicz.

REFERENCES

Received October 28, 1965.