making it difficult to locate the lighter atoms with any precision.

This work has been supported by the Royal Norwegian Council for Scientific and Industrial Research.

Received June 29, 1965.

The Crystal Structures of Mo$_2$As$_3$ and W$_2$As$_3$

PER JENSEN, ARNE KJELSHUS and TERJE SKANSEN

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Oslo 3, Norway

In the course of the continued studies of the transition metal chalcogenides and pnictides at this Institute an investigation of molybdenum and tungsten arsenides and antimonides has been carried out. The present communication gives a brief description of the crystal structures of the previously unknown phases Mo$_2$As$_3$ and W$_2$As$_3$. (The phases Mo$_2$As$_3$ and W$_2$As$_3$ reported by Boller and Nowotny1 are undoubtedly identical with the phases Mo$_2$As$_3$ and W$_2$As$_3$, respectively. However, these authors did neither succeed in assigning the correct compositions nor the true crystallographic unit cells to their samples.) The results of the phase analytical studies of these systems and the structural and magnetic properties of the phases Mo$_2$As$_3$, MoAs$_3$, MoSb$_3$, and WAs$_3$ are discussed elsewhere.1-4

No extended ranges of homogeneity of these phases exist, and the compositions were unequivocally determined to be Mo$_2$As$_3$ and W$_2$As$_3$. The unit cells are monoclinic with the following dimensions (on the basis of Guinier photograph data taken with strictly monochromatized CuK$_\alpha_1$-radiation):

\[\text{Mo}_2\text{As}_3: \]
\[a = 16.061 \pm 0.002 \text{ Å}, \]
\[b = 3.2349 \pm 0.0004 \text{ Å}, \]
\[c = 9.543 \pm 0.001 \text{ Å}, \]
\[\beta = 136.74 \pm 0.02^\circ \]

\[\text{W}_2\text{As}_3: \]
\[a = 15.966 \pm 0.001 \text{ Å}, \]
\[b = 3.2791 \pm 0.0004 \text{ Å}, \]
\[c = 9.599 \pm 0.001 \text{ Å}, \]
\[\beta = 136.648 \pm 0.006^\circ \]

On the basis of the observed densities, 8.07 g cm$^{-3}$ (Mo$_2$As$_3$) and 11.32 g cm$^{-3}$ (W$_2$As$_3$), the unit cells contain 4 $T_4\text{As}_3$-groups ($Z_C = 4.00$ for Mo$_2$As$_3$ and $Z_C = 3.97$ for W$_2$As$_3$).

Needle-shaped single crystals (with the diad axis along the needle axis) of Mo$_2$As$_3$ and W$_2$As$_3$ were obtained by means of transport reactions using traces of bromine as a transport agent. The crystal structures were solved on the basis of integrated Weissenberg photographs of the $h0l$ and hll reflections using direct methods for sign determination. (Attempts to derive trial structures from examination of Patterson syntheses and difference Patterson synthesis were unsuccessful.) The atomic arrangement in the crystal structures of Mo$_2$As$_3$ and W$_2$As$_3$ in terms of the space groups $C2/m$ is as follows (all atoms in position 4i):

\[\text{Mo}_2\text{As}_3: \]
Mo$_I$ with $x = 0.248$, $z = 0.125$
Mo$_{II}$ with $x = 0.351$, $z = 0.567$
As$_I$ with $x = 0.127$, $z = 0.207$
As$_{II}$ with $x = 0.415$, $z = 0.144$
As$_{III}$ with $x = 0.104$, $z = 0.580$

\[\text{W}_2\text{As}_3: \]
W$_I$ with $x = 0.248$, $z = 0.124$
W$_{II}$ with $x = 0.348$, $z = 0.567$
As$_I$ with $x = 0.125$, $z = 0.204$
As$_{II}$ with $x = 0.417$, $z = 0.147$
As$_{III}$ with $x = 0.105$, $z = 0.579$

Details of the structures and discussion of the chemical bonding will be published in a forthcoming paper.

Received June 30, 1965.