Studies of Cyclic Acetal and Ketal Isomers of Glycerol

GUNNAR AKSNES, PER ALBRIKTSEN and PAUL JUVVIK

Chemical Institute, University of Bergen, Bergen, Norway

The present paper reports the gas chromatographic separation of four acetal isomers from the reaction between glycerol and acetal-dehyde. From studies of their infrared spectra, refractive indexes, and densities, the isomers are identified as cis and trans 4-hydroxy-methyl-2-methyl-1,3-dioxolane, and cis and trans 5-hydroxy-2-methyl-1,3-dioxane. The equilibrium ratios of the isomers are studied at four different temperatures, and from these ratios the enthalpy difference between the equilibrium mixture of 1,3-dioxolane isomers and the equilibrium mixture of 1,3-dioxane isomers is calculated to be $-7.0\,\pm\,0.5$ keal. The rates of isomerisation of the pure isomers are studied with and without added catalyst.

A few percent yield of the cyclic ketal isomer, 5-hydroxy-2,2-dimethyl-1,3-dioxane, has been obtained by isomerisation of the five-membered isomer, 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane at temperatures below 0° C.

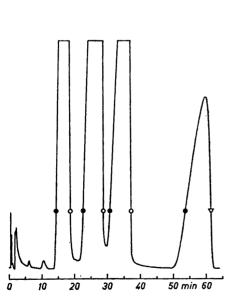
Harnitzky and Menschutkin 1 a century ago reported the formation of a cyclic acetal from glycerol and acetaldehyde. This condensation reaction was later studied by Nef.² Hibbert et al.^{3,4} succeeded in isolating, from the condensation product, two benzoates, which upon alkaline hydrolysis gave 4-hydroxymethyl-2-methyl-1,3-dioxolane (I) and 5-hydroxy-2-methyl-1,3-dioxane (II):

From the tosylate derivatives of (I) Triggle and Belleau ⁵ isolated the *cis* and *trans* isomers, but no physical data except the boiling points were reported.

In contrast to cyclic ketals, five-membered acetals are reported to be less stable than six-membered ones.⁶ In the case of ketals, the lower stability of

the 1,3-dioxane ring as compared with the 1,3-dioxolane ring is believed to be due to an axial repulsion between one of the alkyl groups in the 2-position of the 1,3-dioxane ring and the axial hydrogen atoms in the 4- and 6-positions. In six-membered acetals, the 2-hydrogen atom instead of an alkyl group can be in axial opposition to the axial hydrogen atoms of the 4- and 6-positions, and give rise to only a slight repulsion.

The present paper reports the gas chromatographic separation of the *cis* and *trans* pairs of the cyclic glycerol acetals (I) and (II). The configurations of the isomers are discussed on the background of their infrared spectra, refractive indexes and densities. From determination of the isomer ratio at various temperatures, the enthalpy differences between the pair of 1,3-dioxolane isomers and the pair of 1,3-dioxane isomers have been calculated. The rates of isomerisation of the pure isomers with and without added catalyst have also been studied.


The 1,3-dioxolane and 1,3-dioxane derivatives formed from acetone and glycerol have been synthetised and studied in some detail.

EXPERIMENTAL

The isomer mixture of the cyclic acetals (I) and (II) was synthetised according to the method of Hibbert $et\ al.^4$

The cyclic ketal, 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane, was synthetised according to the method of Fischer and Phäler.

Preparative specifications. The acetal isomers were separated on a preparative gas chromatographic column, $5' \times 1/4''$, containing 20 % Carbowax 20 M on 60/80 mesh

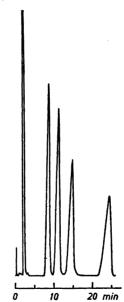


Fig. 2. Analytical chromatogram of glycerol acetal isomers (cf. experimental part).

firebrick. An automatic instrument, Aerograph Autoprep A-700, was used. Column temperature: 146°C. Helium flow: 40 ml/min. Injection temperature: 220°C. Sample size: 200 μ l. Time of analysis: 60 min. A typical preparative chromatogram is recorded in Fig. 1. The circles on the peaks show where the collection of the various fractions have been started and stopped during the preparation.

Analytical specifications. For analytical separation was used a $5' \times 1/8''$ column filled with 20 % PDEAS on 60/80 mesh firebrick. Column temperature: $110-120^{\circ}$ C. Helium flow: 40 ml/min. The Honeywell-Brown recorder was fitted with Disc chart inte-

grator. A typical chromatogram is shown in Fig. 2.

The infrared spectra of the compounds were recorded on a Unicam S.P. 100, MK 2 instrument fitted with sodium chloride prism as well as grating optics. In the region of the hydroxyl absorption the spectra were recorded in carbon tetrachloride, in other regions as films.

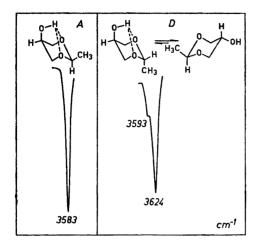
Rate and equilibrium measurements were performed in thermostated glass tubes of 0.4 ml capacities, sealed with silicone rubber gaskets through which a syringe needle could be stung. After fixed time intervals, samples were drawn into the syringe and neutralised with a large excess of pyridine. Thereafter, the sample was applied to the analytical column.

ASSIGNMENT OF CONFIGURATIONS TO THE VARIOUS ISOMERS

The infrared bands of the four cyclic acetal isomers separated on the gas chromatographic column are recorded in Table 1. Isomers (B) and (C) have many absorption bands at the same or almost the same wave numbers; this is especially true for the O-H and C-H vibrations. It is reasonable to assume that (B) and (C) constitute a cis-trans pair of the same cyclic form, either the 1,3-dioxolane or the 1,3-dioxane ring. By corresponding arguments, isomers (A) and (D) probably constitute the other cis-trans pair. Convincing evidence that the cis-trans pair (B) and (C) are the five-membered 1,3-dioxolanes (I), comes from a comparison of their O-H and C-H bands with the corresponding infrared bands of the cyclic ketal, 4-hydroxymethyl-2-dimethyl-1,3-dioxolane, obtained from acetone and glycerol. This reaction is reported 13 to give the five-membered 1,3-dioxolane derivative exclusively, which we have confirmed by gas chromatographic analysis. The cyclic ketal has a primary hydroxyl group which absorbs in infrared at 3635 and 3597 cm⁻¹, corresponding to the free and intramolecularly bonded O-H group, respectively. The corresponding bands of the isomers (B) and (C) absorb at exactly the same wave numbers (Table 1); this strongly indicates the 1,3-dioxolane structure. Likewise, the C-H peaks of the cyclic ketal at 2888, 2940, and 2990 cm⁻¹ correspond nicely with the same bands of isomers (B) and (C).

The free hydroxyl band of isomer (D) at 3624 cm⁻¹ is 11 cm⁻¹ lower than the bands of the free primary hydroxyl groups of (B) and (C). Since secondary hydroxyl groups are known to absorb approximately 10 cm⁻¹ lower than primary ones, this finding indicates that isomer (D) belongs to the 1,3-dioxane

pair (II).


The assignment of *cis* and *trans* configuration to the 1,3-dioxanes (A) and (D), respectively, is based on the following observations:

1. Barker et al.⁸ have found that the cis isomers of various 5-hydroxy-2-X-1,3-dioxanes, where X represents different substituents, have intramolecularly hydrogen-bonded hydroxyl groups exclusively. Isomer (A) of the 1,3-dioxane pair, shows a hydrogen-bonded hydroxyl group only, thus indicating the cis form.

Table 1. Infrared bands (cm⁻¹) of the isomers of glycerol acetal.

807 825 824 855 859 870 898 930 920 984 980 972 1049 1050 1051 1089 1081 1081 1110 1105 1127 1155 1155 1155 1155 1245 1240 1221 1283 1280 1237 1233 1373 1248 1340 1336 1280 1373 1294 1415 1413 1325 1448 1340 1370 1456 1476 1413 1410 2668 1476 1450 2681 1476 1476 1476 2710 2750 2754 2720 2783 2796 2785 2786 2888 2879 2860 2892 2923 2940 2940 2984 2995 2992 2992 2996 3583 3597 3597 3593 3587 3587 3597 3635 3694	(A)	(B)	(C)	(D)
824 855 860 859 870 890 898 930 920 913 984 980 972 1038 1049 1050 1051 1081 1081 1110 1105 1100 1100 1155 1155 1155 1155 1152 1245 1240 1221 1233 1230 1248 1340 1336 1280 1237 1233 1373 1294 1248 1320 1248 1373 1294 1325 1448 1450 1413 1410 1325 1448 1340 1370 1456 1413 1410 2668 1476 1450 1476 1450 2780 2750 2754 2720 2720 2783 2796 2786 2785 2860 2888 2879 2860 2892 2923 2940 2940 2994 2940 2940 2996 3583 3597 3597 3593	807		825	
859 870 890 898 930 920 913 984 980 972 1038 1049 1050 1051 1081 1100 1105 1100 1100 1110 1105 1155 1155 1152 1210 1221 1221 1233 1233 1320 1234 1233 1248 1373 1294 1373 1248 1373 1294 1370 1326 1448 1340 1336 1280 1373 1294 1413 1413 1448 1450 1370 1456 1413 1410 1450 2668 1476 1450 1450 2750 2754 2720 2784 2720 2783 2747 2744 2744 2797 2786 2785 2860 2892 2923 2940 2940 2994 2943 2940 2940 2996 3583 3597 3597 3593				832
898 930 920 913 984 980 972 1038 1049 1050 1051 1044 1089 1081 1081 1100 1110 1105 1155 1155 1155 1155 1210 1221 1221 1233 1230 1248 1340 1336 1280 1237 1233 1373 1294 1415 1413 1325 1448 1340 1370 1456 1413 1410 1456 1476 1450 1476 1471 2718 2681 1476 1471 2718 2664 2750 2754 2720 2720 2783 2747 2744 2720 2783 2796 2786 2785 2892 2923 2923 2923 2942 2943 2940 2940 2984 2995 2992 2996 3583 3597 3597 3593 3597		855	860	
898 930 920 913 984 980 972 1038 1049 1050 1051 1044 1089 1081 1081 1100 1110 1105 1100 1127 1155 1155 1155 1152 1210 1245 1240 1221 1233 1320 1283 1280 1237 1233 1370 1248 1340 1336 1280 1373 1294 1415 1413 1325 1448 1340 1325 1448 1340 1370 1456 1413 1410 1476 1470 1450 1450 1450 1450 1452 2681 2710 2786 2783 2790 2786 2785 2860 2888 2879 2860 2886 2892 2923 2942 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2982 2995 3583 3597 3593 3593 3597 3593	859			866
984 980 972 1038 1049 1050 1051 1081 1081 1110 1105 1127 1155 1155 1155 1155 1210 1245 1240 1221 1283 1280 1237 1233 1320 1248 1340 1336 1280 1237 1248 1341 13 1325 1448 1450 1476 1476 2668 1476 1476 1450 2750 2754 2796 2750 2754 2796 2783 2796 2888 2879 2860 2888 2879 2860 2888 2879 2860 2884 2995 2992 2996 3583 3597 3597 3597 3593		870	890	
984 980 972 1038 1049 1050 1051 1081 1081 1110 1105 1127 1155 1155 1155 1155 1210 1245 1240 1221 1283 1280 1237 1233 1320 1248 1340 1336 1280 1237 1248 1341 13 1325 1448 1450 1476 1476 2668 1476 1476 1450 2750 2754 2796 2750 2754 2796 2783 2796 2888 2879 2860 2888 2879 2860 2888 2879 2860 2884 2995 2992 2996 3583 3597 3597 3597 3593	898			
984 980 972 1038 1049 1050 1051 1089 1081 1081 1110 1105 1127 1155 1155 1155 1155 1152 1210 1245 1240 1221 1283 1280 1237 1233 1320 1248 1340 1336 1280 1237 13448 1413 1340 1450 1373 1325 1448 1450 1340 1456 1476 1450 2668 2681 1476 1450 2750 2754 2790 2750 2754 2790 2750 2754 2790 2796 2796 2888 2879 2860 2888 2879 2860 2888 2879 2860 2888 2979 2923 2942 2943 2984 2995 2992 2995 3583 3597 3597 3593		930	920	913
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	984	980	972	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1022	1038	
1089 1081 1081 1110 1105 1100 1121 1127 1155 1155 1155 1210 1221 1245 1240 1221 1283 1280 1237 1233 1320 1248 1373 1294 1415 1413 1325 1448 1340 1370 1456 1413 1410 2668 1476 1450 2668 1476 1471 2718 2664 2700 2750 2754 2720 2783 2747 2744 2797 2786 2785 2880 2879 2860 2892 2923 2940 2940 2984 2995 2992 2995 3583 3597 3593 3597	1049			1044
1089 1081 1081 1110 1105 1100 1121 1127 1155 1155 1155 1210 1221 1245 1240 1221 1283 1280 1237 1233 1340 1336 1280 1373 1294 1415 1413 1325 1448 1340 1370 1456 1413 1410 2668 1450 1450 2668 1476 1471 2718 2664 2700 2750 2754 2720 2783 2747 2744 2797 2786 2785 2880 2879 2860 2892 2923 2940 2940 2984 2995 2992 2995 3583 3597 3593 3597 3593		1050	1051	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1089			1081
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1105		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		1127	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1155			1152
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1210		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1245		1221	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1280		1233
1340 1336 1280 1373 1294 1415 1413 1325 1448 1340 1370 1456 1476 1413 1410 2668 1450 1450 2668 1450 1450 2661 1476 1471 2718 2664 2700 2750 2754 2720 2783 2747 2744 2797 2786 2785 2860 2888 2879 2860 2892 2923 2940 2940 2942 2940 2940 2940 2984 2995 2992 2995 2996 3583 3597 3597 3593				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1340		1280	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2000		1294
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1413		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1340	1010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1450	1010	1370
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1456	1100	1413	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1476		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2668			1452
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1476	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			22.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.20			2700
2783 2747 2744 2797 2786 2785 2860 2888 2879 2860 2892 2923 2923 2942 2940 2940 2984 2995 2992 2996 3583 2997 3597 3597 3593	2750	2754		2720
2796 2797 2860 2888 2879 2860 2888 2879 2860 2923 2923 2942 2942 2943 2940 2940 2940 2940 2984 2995 2995 2996 3583 3597 3597 3597 3593		2.01	2747	
2797 2786 2785 2860 2888 2879 2860 2892 2923 2923 2942 2940 2940 2984 2982 2996 2992 3583 3597 3597 3593	2.00	2796		2.11
2888 2879 2860 2892 2923 2942 2940 2940 2984 2995 2992 2996 3583 3597 3597 3597 3593	2797	2.00	2786	2785
2888 2879 2860 2892 2923 2942 2940 2940 2943 2944 2945 2995 2996 2995 3583 3597 3597 3597 3593			2.00	2.00
2892 2923 2942 2943 2943 2943 2943 2943 2984 2995 2995 2992 2995 3583 3597 3597 3597 3597 3593	-000	2888	2879	2860
2923 2942 2940 2940 2943 2984 2995 2992 2996 2995 3583 3597 3597 3593	2892	2000	20.0	2000
2942 2940 2940 2940 2940 2940 2940 2940				2923
2943 2984 2995 2992 2996 2995 3583 3597 3597 3593			2940	
2984 2982 2995 2992 2996 2995 3583 3597 3593	#UI#	2943	2010	2010
2995 2992 2996 2995 3583 3597 3597 3593	2984	-0.10		2922
2996 2995 3583 3597 3597 3593	2001	2995	2992	2002
3583 3597 3597 3593	2996		2002	2995
3597 3593				2000
	3000	3597	3597	3593
		3635	3635	362 4

2. The modified Auwers-Skita rule ¹⁰⁻¹² states that *cis* isomers of 1,4-disubstituted cyclohexanes have always the highest refractive indexes and the highest densities. The 1,3-dioxane isomers (A) and (D) most probably are in the chair forms, characteristic for cyclohexane derivatives, and would therefore be expected to obey the Auwers-Skita rule. The data recorded in Table 2, accordingly indicate compound (A) to be the *cis* isomer.

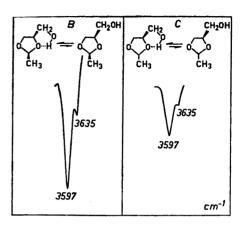
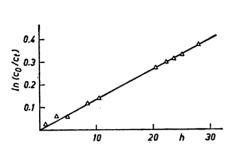


Fig. 3. Free and associated OH-bands of Fig. 4. Free and associated OH-bands of glycerol acetal isomers A and D in CCl₄. glycerol acetal isomers B and C in CCl₄.

3. Usually, the retention times of polar compounds on chromatographic columns are shortest for *cis* isomers. Isomers (A) and (D) have retention times of 9 and 24.5 min, respectively, again indicating (A) to be the *cis* isomer (Table 2).


Judging from the ratio between the intensities of free and associated hydroxyl bands (Figs. 3 and 4) and from the displacement, $\Delta v_{\rm OH}$, of the hydroxyl peak (Table 2), the degree of internal saturation of the isomers through hydrogen bonding decreases from (A) to (D). It is interesting to note that the retention times increase in the same order (Table 2). The reason is most probably that an increase of the internal saturation results in a corresponding decrease of intermolecular forces between the acetals and the liquid phase of the column.

Essentially the same arguments as above, can be used to assign the *cis* and *trans* configurations to the 1,3-dioxolane isomers (B) and (C), respectively. Barker *et al.*⁹ from studies of the infrared spectra of *cis* and *trans* isomers of 2,4-dimethyl-1,3-dioxolane, found strong absorption bands in the region 1040—920 cm⁻¹, which they believed to be due to skeletal vibrations of the

Table 2 .	Physical	data	of	the	isomers	of	glycerol	l acetal.
-------------	----------	------	----	-----	---------	----	----------	-----------

Isomer	$\begin{array}{c} \text{Refractive} \\ \text{index} \\ n_{\text{D}}^{\text{20}} \end{array}$	Density d_4^{19}	$ m ^{\it \Delta v_{OH}} m _{cm^{-1}}$		Rate of isomerisa- tion in benzene ^a (first order rate constant, sec ⁻¹)
A	1.4487	1.152	41	9	0.87×10^{-5}
${f B}$	1.4363	1.130	38	11.5	1.11×10^{-5}
\mathbf{C}	1.4380	1.124	38	14.5	1.01×10^{-5}
\mathbf{D}	1.4424	1.138	31	24.5	2.38×10^{-5}

^a Catalyst: 5.6×10^{-7} mole/l HClO₄, 70° C.

0.4 15 0.2 30 60 90 120 min

Fig. 5. First order plot of the rate of isomerisation of the pure trans isomer of 4-hydroxymethyl-2-methyl-1,3-dioxolane without added catalyst. Temp 79.3°C.

Fig. 6. Rate of isomerisation of the pure trans isomer of 4-hydroxymethyl-2-methyl-1,3-dioxolane in the presence of approximately 10^{-8} mole/l hydrochloric acid. Temp. 75°C.

ring. The strongest peaks of the *cis* isomer were located at 1022, 947, and 935 cm⁻¹, whereas the *trans* isomer absorbed at 1036, 943, and 926 cm⁻¹. Isomers (B) and (C) have peaks (Table 1) at 1022, 980, 930 cm⁻¹, and at 1038, 972, 920 cm⁻¹, respectively, indicating (B) to be the *cis* isomer.

Likewise, the retention times in Table 2 point to isomer (B) as the cis compound.

RATES OF ISOMERISATION OF THE ACETAL ISOMERS

The isomerisation of the acetal isomers is well suited for gas chromatographic analysis, because the isomerisation, which is acid catalysed, can be effectively stopped by addition of base. The isomerisation is extremely sensitive towards acids. In fact, the acidity of the glass wall of the reaction vessel is sufficient to promote the isomerisation of the most labile isomers.

When the reactions are studied within the first 20 % of isomerisation the kinetics are strictly first order. In Fig. 5 is shown first order plot of the pure trans isomer of 4-hydroxymethyl-2-methyl-1,3-dioxolane (I) without added catalyst.

The sensitivity of the pure isomers towards acids is so great that rate studies are not practicable with acid concentrations higher than approximately 10^{-8} M. Experiments have shown that the rate of acid catalysed isomerisation of the pure isomers is far from proportional to the acid concentration. There appears to be a threshold concentration, below which the rate is equal to that of the uncatalysed isomerisation. Above this threshold, the concentration region within which measureable rates can be obtained is very restricted. It might be argued that the catalytic amounts of hydrochloric acid present could react with the acetal to give an open-chain product:

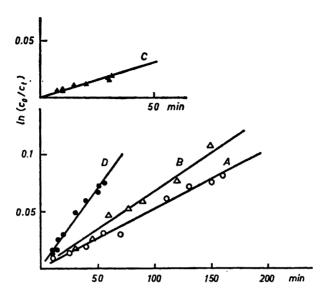


Fig. 7. First order plots of the rate of isomerization of glycerol acetal isomers (A), (B), (C), and (D) in benzene solution. Catalyst: 5.6×10^{-7} mole/l HClO₄. Temp. 70.0° C.

This assumption is doubtful, however, since it was found that perchloric acid gave essentially the same reaction picture. Another characteristic feature of the acid catalysed isomerisation of the pure compounds is a very sudden drop in rate after a short time of reaction (Fig. 6). The rate decrease is too abrupt to be caused by the backward reactions of the formed isomers, and points to a destruction of the acid catalyst in some way.

In benzene solution the acid catalysed isomerisation is much easier to control since the concentrations of acetal and acid can be varied at will. Some representative experiments are plotted in Fig. 7. It is interesting to observe that the rate of isomerisation increases with decreasing internal hydrogen bonding in the acetals (compare the rate data with $\Delta \nu_{\rm OH}$ in Table 2. See also Figs. 3 and 4). Since isomerisation of acetals exhibits specific acid catalysis, it is reasonable that the strongest internally hydrogen bonded isomer is less sensitive to attack from an external proton.

Table 3. Equilibrium constants and thermodynamic data for the 1,3-dioxolane/1,3-dioxane system of glycerol acetal.

Temp. °C	k	ΔF cal/mole	ΔS cal/deg. mole	△H (average) kcal/mole
70	0.8913	77.7	-20.2	
75	1.005	9.86	-20.1	-7.00 ± 0.5
80	1.195	-135	-20.3	
106.5	2.371	-650	-20.2	

EQUILIBRIUM STUDIES OF THE ACETAL ISOMERS

The equilibrium between the four acetal isomers was studied by acid catalysed isomerisation of one of the pure isomers. The same equilibrium ratio was established whether the dioxane or the dioxolane derivatives were used as starting material. The results from measurements at four different temperatures are recorded in Table 3. In Fig. 8 are plotted ln K against 1/T, from which the enthalpy difference, ΔH , between the pair of the five-membered 1,3-dioxolane isomers and the pair of the six membered 1,3-dioxane isomers is calculated as -7.0 ± 0.5 kcal, the latter pair being the most stable.

The 20 e.u. lower entropy of the dioxanes as compared with the dioxolanes is perhaps the most interesting result. The dioxolane isomers have a methylol group attached to the ring, whereas the dioxane isomers contain a hydroxyl group; this gives rise to a greater flexibility of the dioxolane isomers. The dioxane isomers are also to a larger degree intramolecularly hydrogen bonded which further increases the rigidity of the molecules and contributes to a loss of entropy (Figs. 3 and 4). The low frequency of the $ea \Rightarrow ae$ transition of the eis form, and of the $ee \Rightarrow ae$ transition of the trans form of the 1,3-dioxones, as compared with the corresponding "pseudorotation" of the 1,3-dioxolanes, may also contribute to an unfavourable entropy of the dioxanes.

The equilibrium experiments (Table 3) clearly show that the yield of the various acetal isomers is strongly temperature dependent, lower temperatures favouring the 1,3-dioxane system. Studies of the product composition during the first minutes of synthesis, of the acetal from glycerol and acetaldehyde, show that the 1,3-dioxolane isomers are most quickly formed, but that the

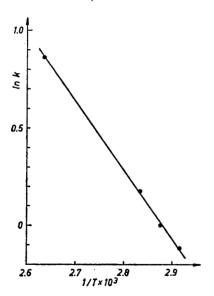


Fig. 8. The plot of ln K against 1/T for the equilibrium 1,3-dioxolane/1,3-dioxane forms of glycerol acetal isomers.

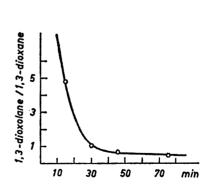


Fig. 9. The plot of the ratio 1,3-dioxolane/1,3-dioxane isomers at different times after start of synthesis. Reaction temp. 25°C.

reaction mixture proceeds towards equilibrium very rapidly (Fig. 9). The easier formation of the dioxolane system is most likely due to a higher frequency factor for the closing of the five-membered ring as compared with the six-membered one.

ISOLATION OF THE SIX-MEMBERED CYCLIC KETAL, 5-HYDROXY-2,2-DIMETHYL-1,3-DIOXANE

As mentioned earlier, acetone and glycerol give only the five-membered dioxolane derivatives (III) under ordinary synthetic conditions.

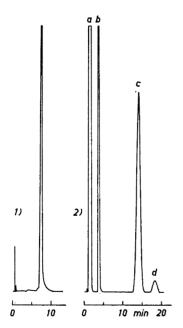


Fig. 10. 1) Chromatogram of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane.

2) Chromatogram after isomerisation of the dioxolane isomer at —4°C for 4 days in the presence of hydrochloric acid:

a) benzene, b) pyridine, c) 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane,

d) 5-hydroxy-2,2-dimethyl-1,3-dioxane.

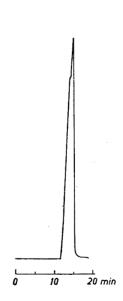


Fig. 11. Chromatogram of glycerol formal.

On the basis of the enthalpy and entropy values found for the dioxolane/ dioxane systems of the acetal isomers, an attempt was made to estimate the equilibrium constant of the dioxolane/dioxane systems of the corresponding ketal isomers (III) and (IV).

According to the hypothesis mentioned in the introduction of the present paper, the instability of the 1,3-dioxane ring of the ketal is due to an axial opposition of the 2-methyl group and the hydrogen atoms in the 4- and 6positions in the ring. As a first approximation we assume that the axial repulsion energy is equal to the corresponding repulsion energy in methyl cyclohexane, which is of the magnitude of 2 kcal. 16 If, further, the entropy difference in the dioxolane/dioxane system of the ketals is set equal to that of the acetals. the equilibrium constant of the ketal system is calculated to be 0.14 at 0°C. Thus, according to this crude estimate it should be possible to isolate the sixmembered cyclic ketal from the five-membered ketal by isomerisation at sufficiently low temperature. This was experimentally confirmed through isolation of a two percent yield of the 1,3-dioxane-isomer of the ketal after keeping a sample of the pure 1,3-dioxolane isomer with acid catalyst below 0°C for several days (Fig. 10). Due to the very low rate of isomerisation, the approach towards equilibrium was extremely slow so that it was not attempted to measure the equilibrium ratio. Infrared analysis showed that the new isomer had a free hydroxyl peak at 3625 cm⁻¹, i.e. 10 cm⁻¹ lower than the 1,3dioxolane compound, which clearly demonstrates the presence of a secondary hydroxyl group characteristic of the 1,3-dioxane ring. As mentioned earlier, exactly the same behaviour was observed for the acetal isomers (Table 1).

Brimacombe et al.14 have reported that the isomers of glycerol formal cannot be separated gas chromatographically. Experiments performed by us with various column materials have resulted in a partial separation sufficient to show that the isomers are present in comparable amounts (Fig. 11). This result confirms earlier findings of Hibbert and Carter 15 who isolated the isomers via the benzoates. With regard to the ratio between dioxolane and dioxane isomers, the formal system thus resembles the acetal system but differs from that of the ketal which at the same temperature exists only in the dioxolane form. Due to the absence of substituents in the 2-position of the dioxane form of the formal, no axial repulsion with the 4- and 6-hydrogen atoms of the ring is expected, and the observed resemblance with the acetal is therefore reasonable.

REFERENCES

- 1. Harnitzky, T. and Menschutkin, N. Ann. 136 (1865) 126.
- Nef, J. U. Ann. 335 (1904) 216.
 Hill, H. S. and Hibbert, H. J. Am. Chem. Soc. 45 (1923) 3117.
- Hill, H. S., Hill, A. C. and Hibbert, H. J. Am. Chem. Soc. 50 (1928) 2242.
 Triggle, D. J. and Belleau, B. Can. J. Chem. 40 (1962) 1201.
- 6. Eliel, E. L. Stereochemistry of Carbon Compounds, McGraw Hill Book Company, New York 1962, p. 200.
- 7. Fischer, E. and Phäler, E. Ber. 53 (1920) 1607.
- 8. Barker, S. A., Brimacombe, J. S., Foster, A. B., Whiffen, D. H. and Zweifel, G. Tetrahedron 7 (1959) 10.

- 9. Barker, S. A., Boume, E. J., Pinchard, R. M. and Whiffen, D. H. J. Chem. Soc. 1959 8Ó7.

- 1809 807.

 10. Auwers, K. v. Ann. 420 (1920) 84.

 11. Skita, A. Ber. 56 (1923) 1014.

 12. Ref. 6, p. 216.

 13. Irvine, J. C., MacDonald, J. L. A. and Soutar, C. W. J. Chem. Soc. 107 (1915) 337.

 14. Brimacombe, J. S., Foster, A. B. and Haines, A. H. J. Chem. Soc. 1960 2582.

 15. Hibbert, H. and Carter, N. M. J. Am. Chem. Soc. 50 (1928) 3120.

- 16. Ref. 6, p. 204.

Received February 12, 1965.