Acknowledgement. The authors are indebted to Professor Eero Tomnila, University of Helsinki, for reading the manuscript.

3. Freudenberg, K. Holzforschung 18 (1964) 3.

Received February 8, 1965.

Quantitative Fractionation of Low-Molecular-Weight Iodine-Containing Compounds in Thyroid Hydrolysates

R. KARLSSON

The Minerva Foundation Institute for Medical Research, Helsinki, Finland

There is a need of good and reliable methods for the quantitative fractionation of low-molecular-weight iodinated compounds which at the same time are suitable for automatic recording. The method to be described was developed in this laboratory to meet these demands. The method has already been in use for a long time for the routine fractionation of thyroid hydrolysates and has proved to give reliable results.

A chromatography column about 40 cm x 2 cm in size is packed tightly with a very pure dry cellulose powder (J. H. Munktell’s cellulose powder No. 400, Grycksbo Pappersbruk, Grycksbo, Sweden). The cellulose is applied as small discs about 0.5 cm thick. After packing, the column is wetted, starting from the bottom, with the eluent, a butanol-ethanol-ammonia-water solvent system, by a hydrostatic arrangement. The solvent that has passed through is discarded, the direction of flow reverted and the column eluted with 200 ml of the solvent. Before the sample to be analysed is applied on the top of the column, the remaining solvent is sucked off and the column is allowed to drain until the top of the column is almost dry. Good results will be achieved if the volume of the sample does not exceed 0.5 ml. The effluent is collected with a fraction collector. The flow-rate is adjusted with hydrostatic pressure to about 5 ml per hour. A suitable volume for each separate fraction is about 1.5 ml.

If the sample contains radioactive material the radioactivity can be continuously recorded with the aid of a glass spiral passing through a well-type scintillation crystal in the way previously described. Since the flow-rate is fairly constant it is not necessary to use a proportionating pump. The sample can be screened for stable iodine (I$_2$) by the cerium sulphate method, either automatically during the fractionation or from aliquots taken from each separate fraction.

![Figure 1](image)

Fig. 1. Fractionation of a hydrolysate from human thyroid tissue. Ordinate: radioactivity in arbitrary units. Abscissa: volume of the eluent (50, 100, 150, and 200 ml).
After localization of the peaks the cor-
responding fractions are pooled and the
stable iodine determined quantitatively.2

With this method it is possible to obtain
good separation of the iodothyronines
(thyroxine and tri-iodothyronine together
in one fraction), iodide, mono- and diiodo-
thyrosine (Fig. 1). The thyronines can then
be separated by using, for instance, a
suitable paper chromatography method.1
When about 200 ml of the solvent has
passed through the column the eluent is
replaced by distilled water. In this way
a fifth fraction is obtained which pro-
visionally has been called the non butanol
extractable iodine fraction. The total
yield has always been above 90 %.

The method described has certain advan-
tages as compared to the paper
chromatographic methods that are used
for the fractionation of thyroid hydro-
lysates. The differences will be discussed
elsewhere.

Acknowledgements. The skilful technical
assistance of Mrs. Anneli Lehtinen is gratefully
acknowledged. This study was aided by grants
from The Finnish Medical Research Council,
the Sigrid Juvelius Foundation and the
Medicinska Understödsföreningen Liv och Hälsa.

1. Björkstén, F., Gräbebeck, R. and Lamberg,
Scand. 17 (1963) 1.
3. Foss, O. P., Hankes, L. V. and van Slyke,
4. Block, R. J. and Mandl, R. H. Ann. N. Y.
Acad. Sci. 102 (1962) 87.

Received February 3, 1965.

The Structure of Trypacidin

J. BALAN,* A. KJÆR,* Š. KOVÁČ b
and R. H. SHAPIRO* c

* Biological Institute of the Slovak Academy of Sciences, Department of Microbiology,
Bratislava, Czechoslovakia
b Chair of Organic Chemistry, Chemical
Faculty, Slovak Polytechnical University,
Bratislava, Czechoslovakia
c Department of Organic Chemistry, Royal
Veterinary and Agricultural College,
Copenhagen, Denmark

Trypacidin1 is an antibiotic isolated from
Aspergillus fumigatus2 with interesting
antiprotozoal properties in vitro4 as well
as high activity in experimental toxo-
plasmosis in mice.2 Its elementary composi-
tion C_{15}H_{17}O_{7}, and a few physical constants
have previously been presented.2 We now
wish to report that trypacidin possesses the
structure (I, R = CH₃).

The ultraviolet and infrared spectra of
trypacidin, together with various chemical
characteristics, suggested that trypacidin
was structurally related to the geodin
group of antibiotics. The NMR-spectrum
(in CDCl₃) (Fig. 1) provided an important
cue to its detailed structure. Four 3H-
singlets at 2.42, 3.62, 3.65, and 3.94 ppm,

* National Science Foundation Postdoctoral Fellow, 1964–1965.