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Electron Distribution and Chemical Binding

J. L. J. ROSENFELD*

Institute of Theoretical Physics, University of Stockholm, Stockholm, Sweden

The electron distribution in a series of bond types and molecules
is analysed using the Roux ¢ function. For ¢ bonds and lone pair
orbitals distinet regions of positive d are found localised where clas-
sically the bond or lone pair would be drawn. It is shown that for a
given bond there is a good correlation between the bond strength
calculated by an approximate wave function and the maximum value
of ¢ in the bonding region obtained from the same function. It is
suggested that a better correlation might be found by integrating
the 4 function over the region in space where it is positive.

I. INTRODUCTION

It has long been realised that the formation of a molecule from a number
of atoms is intimately connected with a change in the electron distribution
among them, as a result of which the total energy of the system is lowered.!
It is also well known that the binding energy is only a small fraction (generally
about } 9,) of the total electronic energy. Because of this one can consider
the formation of a molecule as being the result of a amall perturbation on the
atoms concerned. One may therefore expect that the change in the electron
distribution on formation of a molecule will also be small, and one might hope
that such changes would by and large be restricted to those regions where the
interaction was strongest, that is in the regions between those atoms where the
traditional ‘“‘chemical bonds” are supposed to be localised. The recent trend
in the increased complexity of molecular wave functions, based on essentially
delocalised one electron functions (e. g. the Molecular Orbital methods) has
made it rather difficult to obtain simple correlations between them and the
idea of localised bonds. Such correlations are extremely desirable, since the
concept of a chemical bond is so well established and has proved so success-
ful in explaining and correlating all kinds of experimental data. Looking at a
complicated wave function is not generally as illuminating as looking at a
structural formula. Two such correlations have been introduced in the past
decade. The first, Mulliken’s population analysis,? divides the electron distri-
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bution into two parts, the net atomic populations and the overlap populations.
Bonding, bond order and bond strengths are correlated with the overlap popula-
tion. In another analysis the whole electron distribution is divided up among
the atoms to yield the gross atomic populations. These quantities are corre-
lated with charge transfer (hence with the dipole moment), with hybridisation
and with electron affinities. This method has become widely accepted and
most publications dealing with LCAO MO wave functions include such an
analysis. It has the advantage of being able to deal with one molecular orbital
or one atomic orbital at a time, thus pinpointing those responsible for bonding,
etc.; but has the disadvantage that, since the quantities it deals with are elec-
tron distributions integrated over the whole of space, detail is lost, in particular
with regard to the precise localisation of a bond. Furthermore, since it does
not seek to compare in a quantitative manner a molecule and a similar (hypo-
thetical) noninteracting system of atoms, it is difficult to understand, on a
quantitative basis, exactly what changes have occurred as a result of the inter-
atomic interactions (for example there may be a large overlap population
between two noninteracting atoms placed hypothetically in the positions they
occupy in the molecule considered).

The second attempt to find connections between the complex molecular
wave functions and the localised chemical bonds was introduced in 1956 by
Roux and collaborators.>7 In this method the electron density of the molecule
is compared directly with the hypothetical distribution which would be ob-
tained if the atoms occupied the same positions as in the molecule, but without
interacting. In general also, the electron distribution for each atom is made
spherically symmetrical (e.g. for the four electrons in the (2p) shell of the oxygen
atom), since any polarisation or fixing of the axes of the atoms in space im-
plies some interaction. As will be seen later there are special cases when the
assumption of the fixing of at least one axis in space gives further insight into
the connection between the chemical bond and the difference (called J) between
the two electron distributions discussed above. In contrast to the calculation
of overlap and atomic populations, which are easily done on a desk calculator,
the calculation of the J function is generally laborious and is only feasible for
a large number of molecules if an electronic computer is used. Furthermore it
is not generally useful to consider any one molecular orbital in isolation,
though it is feasible to consider orbitals of a given symmetry as a group.

Recently, Shull8,® has analysed two-electron bonds in terms of atomic
and ionic character. For homonuclear molecules he shows, starting from an
expansion of the wave function in terms of natural orbitals, that both the
atomic and ionic parts of a wave function are non-bonding, whereas it is
the cross term which is strongly bonding and can be related to the concept
of “covalency”. For heteronuclear molecules he also obtains a parameter
which correlates well with the electronegativity difference between the atoms.
This method is also absolute in the sense that no comparison is made between
the molecule and its constituent atoms. This method is apparently restricted
at present to diatomic molecules.

It is the Roux ¢ function which is discussed in greater detail in the remainder
of this paper.
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Consider a system of N electrons represented by the normalised wave
function ¥. The electron density p at a point p can be written (in atomic
units*)

N dz
o=3 [ eyl )

where [....do means summation over all the spins and |....dzr/dz,, means inte-
gration over the space coordinates of all but the mth electron. The coordinates
7,, of this electron take the value p.

When ¥ is some linear combination of M (M >N) one-electron functions
(e.g. atomic orbitals), it is possible,:10 to rewrite eqn. (1) and obtain

M M
er=| 2 z cmxm"‘x..] (2)
m=1 n=1 P

where the y,, are the one electron functions of the space coordinates (r,0,¢).
The matrix C whose elements are c,, is known as the density matrix.

For the system of non-interacting atoms, the density oF is obtained by a
superposition of the atomic electron density fucntions, averaged over the
angular coordinates of the electrons. Each atomic orbital is assumed to be
a product of a radial and an angular function:

In = Bu(r) Y n(0,0) (3)
For the product y,*y,, the averaging yields
Thus oF is obtained as

of = 2 OmBRaR, Y, *Y, (5)

where a,,, is analogous to ¢, in eqn. (2). The é function is simply the difference
between g and ¥,

6= 0 — QF = mz (cmnxm*xn"“amanRn Ym* Yn) (6)

= R.R,Y,*Y, (4)

Note that the orbitals used for the molecular wave function are not necessarily
the same as those for the atomic functions.

II. TWO-ELECTRON BONDS

In order to gain insight into the connection between the 6 function and
the concept of the chemical bond, it is easier to consider a single doubly-filled
molecular orbital y in a diatomic molecule AB. To calculate gf, we assume
there is one electron on each atom A and B, whose wave functions are y, and
2s Tespectively. Several expansions for ¢ can be considered. In the simplest

* One a.u. of length = the Bohr radius, one a.u. of charge = the electronic charge. These
are obtained by letting h =e=m,=c = 1.
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case (case I) y is a linear combination of the same two orbitals y, and y;.
In a better approximation (case II), y is a linear combination of two orbitals
@, and @, which differ from y, and yp in the value of the exponent. In either
case we can write

x(r,0,9) = F(r)-&(r,0,p) (M
where for normalised Slater-type orbitals of principal quantum number =,
F(r) = y»+D2exp[(1—y)ar] (8)

in which y = /e is the ratio of the exponents in y (8) and @ (), respectively.
The angular functions of y and @& are identical. In case I, ¥ and hence F take
the value 1.

Finally, » may be a linear combination of more than two atomic orbitals.
This approximation is not considered here because it is in a sense equivalent
to case II. It was used however in obtaining the functions in a series of mole-
cules as described in the last section of the paper.

We can now obtain ¢ by noting that

P =10, Py + 5Py 9)
and that since p, @, and P, are all assumed normalised,
W2+ cg? 4 20,058 =1, (10)

where § = (®,|P;> is the overlap integral. Substltutmg into eqn. (6) from
eqns. (3), (4), (8) (9) and (10) yields
(2c,2—1)(8D2— D, D) + (205> — 1)(S P52 — ¢A¢B)
S
+ R XY, Y*,—F2Y, *Y )+ R Y g*Y ,— F 2Y *Y ) (11)

Here, I have for convenience written @2 instead of ®*® and 29,P;, instead
of (D*D, + DP*D,).

The effect of F, and Fy can now be gauged. From eqn. (8) it is clear that
if y <1, then Fis smallest at small 7, and vice versa. Thus one expects J (case
I) to be less than § (IT) near those atoms for which y <1, and vice versa. This
is illustrated in Fig. 1, which shows § functions along the internuclear axis
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c Fig. 1. LiH molecule. ¢ along the inter-
L nuclear axis. Calculated using Ransil’s
00 N SCF functions.!* a) Slater exponents in
I .| both molecular and atomic wave functions.
01 '\ - b) “Best limited’’ exponents in both molec-
W/ Hatom | wular and atomic wave functions. c) ‘‘Best
-o2r i limited” and “best atom’, respectively,
-0.3 1 Y 1 1 1 in molecular and atomic wave functions.
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for LiH, calculated with different wave functions all taken from Ransil’s
paper.! Curve a was obtained using Slater exponents both for the molecular
and atomic wave functions. For Curve b again the exponents for both density
functions were the same but this time Ransil’s ““best limited” values were
used. In calculating curve ¢ the “best limited”’ set was used for the molecular
wave function, and the ‘““best atom’’ values for the atoms. Curves ¢ and b
therefore represent case I (y = 1), whereas curve ¢ represents case II. In this
instance y <1 for Li and y >1 for H. It is clearly seen that J (curve c) is largest
of the three near the Li atom, and smallest near the H atom. Curves b and ¢
are the more nearly comparable since they were both obtained with the same mo-
lecular wave function so that the differences between them are entirely due to
the different values of . A similar effect has been observed for C, and C,.1?

When F = 1 (case I), several interesting conclusions may be drawn from
eqn. (11). Firstly, for s orbitals the last two terms vanish, whereas for other
orbitals they are in general non-zero. For example, for p, functions (Y*Y —
Y*Y) oc (3cos?0—1). Secondly, from eqn. (10) it follows (for S>>0, which is
usually the case) that if (2c,2—1) is positive, then (2c;2—1) will necessarily
be negative and wvice versa. Hence for a polar bond, with A electronegative rela-
tive to B, (c,>cg), 8 will be largest (and positive) where @, is largest, and
smallest (and negative) where @, is largest. For a 2po bond, the last two terms
will contribute positively to 6 when 6, and 0, are small (the z axes being
defined as pointing toward each other), so that & will be greatest along the
internuclear axis. Thus we are led to expect a region of positive  between
the nuclei, closer to the more electronegative atom (cf. Ref.l, p. 107 ff. and
also Fig. 1). A further interesting conclusion may be drawn when F is not
equal to 1, namely that, for sufficiently large r, § will always become negative
if y<1 for those orbitals which contribute most to § in that region. Hence
in case II, the positive regions of ¢ are closed if y< 1. Examination of y for a
series of molecules (see Ref.1') shows that in fact y<<1 for the outlying valence
orbitals when the exponents are optimised separately (with respect to the
energy) for the atoms and molecules. Similar closed regions of positive § values
are obtained if y is improved over case I by enlarging the basis set in the molec-
ular wave functions (with or without changing the exponents). It seems
probable therefore that these closed regions are a real phenomenon and that
they may be associated with localised changes in electron density on bond
formation. They do not necessarily occur if y is given by case I.

For a more quantitative analysis we consider next the simpler case of
homonuclear molecules. For these, ¢, = c; and hence eqn. (10) gives

(2¢,2—1) = (2e53—1)=—8/(1-+8) (12)

so that eqn. (11) becomes

A -
5— T [2¢A@B'—S(¢A2+¢B2)] +RAY *Y,—F,2Y,*Y,) (13)

+‘RB2( YB* YB—F'B2 Y‘B* YB)
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(i) The 1s-1s bond: The hydrogen molecule

For this molecule,
3 . .
Dy = [a;]* exp(—ary) , Y ,*Y,=Y,*Y, =1 (14)

F 2 =93 exp[2(1—y)ar,] , y = 1/a

since for the H atom g = 1.

Similar expressions hold for @,, Y *Y, and Fg2. The expression for ¢
takes on a simpler form if the unit of length is rescaled by a factor «. This is
accomplished by the following substitions:

ary=R, ,arg=Ry, R\+Ry=R , arpy=R, , 4=0/d® (15)
Eqn. (13) then becomes
1
A= HLE8) { 2 exp(—R)——S[exp(-2R+QRA)+eXp(——2RA)] }
+ w) [1_FA2 + exp(—2f + 2R,) [I—FBz]

From this equation it is clear that 4 reaches a maximum for arbitrary R when
R, = Ry = 4R ,i.e. along the perpendicular bisector of the internuclear
axis. Along this line 4 = 4,,, say, where

RI1—
dm 2R o 0] 1)

(16)

in which F,2 = F 2 = F?, since R, = R, along the line considered.

4,, in turn is greatest when R is smallest, that is when R=R,, at the center
of the molecule. At that point 4 = 4,. Since S is a function of R, only,’® in
this case

8 =T[1+ Ry + (By2/3)] exp(—R,) (18)

it then follows from eqns. (17) and (14) that 4, is a function of B, and « only.
When e = 1 (y = 1, case I), 4, is a function of R, which has a single maximum
at R, = 1.72. Unfortunately this interesting property disappears for any
constant value of ¢>1 (case II, y<<1). Coulson * optimised the energy by
varying only the internuclear distance, keeping a« = 1. He obtained the maxi-
mum binding energy at R, = 1.61. In another calculation * he varied both
rap and e, and obtained a maximum at @« = 1.197, r,p = 1.3833, i.c. at By =
1.66, y = 0.835. The first calculation corresponds to case I, the second to case
II. The values of §, and the binding energy D, are shown in Table 1 for these
and for the Heitler-London and James-Coolidge (5 term) functions (Ref.3, p.
939, Figs. 1, 2; for these latter functions J is not obtained from eqn. (13),
since g is not given by eqn. (9)). There is a good correlation between J, and
D, except for the worst function. It is probable that this correlation reflects
the physically more reasonable one between D and the total build up of charge
between the atoms. This latter quantity would best be represented by the
integral of & over all positive values. It may be that J, no longer reflects the
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ELECTRON DISTRIBUTION IN BONDS 1725

value of this integral for the worst wave function. Such an integration is similar
but not equivalent to Mulliken’s analysis,? in which one integrates over the
whole of space, instead of over a localised region as is suggested here (see Ref.3,
p- 939 for a further discussion).

At one of the nuclei, B say, B, = R, R; = 0, and from eqn. (16) and (14)
4, is obtained as

_ 2exp(—R,)—S(exp(—2Ry) +1) | exp(—2R,) [,
Au - 76(1 + S) + 7 [l—y exp(l_y)RO]

1—93
g1y
T

(19)

For y =1, 4, is negative for all values of R, (except R, = 0, 4, = 0), but
when p>1, 4, may be positive. Indeed, for the Coulson (case II) function
mentioned above, as for the James-Coolidge function, 4, is positive. For the
Coulson (case I) and the Heitler-London functions, 4, is negative. This may
be a further indication of how good a wave function has to be before  calculated
from it has the same qualitative properties as the y function obtained with
an accurate wave function. '

Table 1. 6, and the binding energy D for H,.

Function d; (a.u.)| D (e.v.) R, y rAB (a.u.)
Coulson (case I) 0.023 2.68 1.61 1.0 1.61
Heitler-London 0.021 3.14 1.51 1.0 1.51
Coulson (case II) 0.0883 | 3.47 1.66 0.835 1.383
James-Coolidge (5 term) 0.105 4.50 — — 1.40
Experimental — 4.72 — — 1.41

(i) The 2s-2s bond: The lithium molecule
Here

5 B
D, = [b;]% N(ry,—a)exp(br,), Y ,*Y, =Y ,*Y, =1 (20a)
in which the normalisation constant N is
N = [2(3—3ab + 2a%2)] ¥ (20b)

Similar expression hold for @;. If the parameters are b’, ¢’ and N’ for the
atomic wave functions then F, is obtained from eqn. (8) as

N2 —n’' 72
F2e oy (l‘l> [’A a ] oxp 2(1—y)br, with y = b'/b (21)
N A—Q
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When the unit of length is rescaled in equations analogous to eqn. (15), the
4 function is obtained by the substitution of eqns. (20) and (21) into eqn.
(13). It is again found that for arbitrary R, 4 reaches a maximum along the
perpendicular bisector of the internuclear axis. In this case, the equation
analogous to eqn. (17) is

\ —
4 = 12%; (R—ab)? exp(—R) [—}_—i_—g— + (*Fz)] (22)

Because of the factor (R—ab)?, 4,, now reaches a maximum at
R =2(14ab) or R =R, (23)

whichever is the larger. Thus for B, <2(1 + ab), the 2s-2s bond displays a
ring of maximum § values around the centre. However, this situation does
not occur for the Li, molecule in its ground state. Coulson and Duncanson 15
have treated Li, as a two-electron problem using the wave function discussed
here. At an internuclear distance r 5 = 5.0 a.u., they obtain the best energy
when a = 1.000, b = 0.81, which values correspond to B, = 4.05 and 2(1 + ab)
= 3.63. For the Li atom they obtain the optimum parameters as a’ = 0.867,
b = 0.767 or y = 0.947, N'/N = 0.9985.

An analysis of 4, as a function of R, again shows a single maximum (at
R, = 4.05) when it is assumed that y = 1, but as for the 1s-1s bond this feature
disappears when the wave function is improved by setting y <<1. At the nuclei,
4, is negative for this function for y <1, but for more accurate wave functions
(including the 1s electrons and an extended basis set), d is found to be positive
at the nuclei.?

Table 2 shows 8, and the binding energy D calculated with the Coulson-
Duncanson function, several SCF functions, and the function including config-
uration interaction (C.I.). Except for Ransil’s function,! the values of §,
have been taken from Fig. 2 in Ref.* There is some inconsistency among the
SCF functions,* so that the trend in &, is somewhat uncertain. There does seem
to be a correlation in this case also between §, and D except for the C. I.
function. Roux has pointed out 4 that this function includes n-z interactions
for which § has a minimum at the centre of the molecule (see later). For this
function however the region of positive § values extends further off the inter-
nuclear axis (see Figs. 3, 3’ in Ref4), so that the integral of 6 over
this positive region may still be largest for this function. Another feature
of Tables 1 and 2 is that both J, and D are about ten times smaller
for Li, than for H,. This suggests that the correlation between them is inde-
pendent of the molecule considered, within the class considered here, namely
homonuclear diatomic molecules with o bonds.

* For an SCF LCAO MO function using 18, 2s and 2pc atomic orbitals on each Li atom as
a basis set, Ransil’s “‘best limited” exponents!! should yield the lowest energy. Faulkner’s function
used in Ref.* however, reportedly gives an even better energy. Dr. Ransil in a private communi-
cation expresses his opinion that this discrepancy is due to inaccuracies in the values particularly
of certain hybrid integrals used by Faulkner. Because of these the third decimal in Faulkner’s
result is not reliable. Any consequent errors in the coefficients could, of course, result in erroneous
d values.
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Table 2. 4, and the binding energy D for Li,.

Function d; D R, y rAB Basis set for MO

Coulson-Duncanson 0.002|—0.30{ 4.05 | 0.947| 5.0 28
Ransil SCF (Slater) 0.006| 0.15 | 3.28 | 1.0 5.05 | 1s, 23, 2po

Faulkner’s incomplete SCF¢ | 0.008| 0.22 | 3.23 | 1.0 5.05 | 1s, 2s

Faulkner’s Complete SCF* 0.008| 0.33 | 3.23 | 1.0 5.05 | 1s, 2s, 2po

Kotani et al. 4 configurations® | 0.005| 0.732f — | 1.0 | 5.0 |includes n-n configu-
ration

Experimental 1.056 | — — | 5.05

2 See Ref.%* for details and other references. For Faulkner’s function see also footnote
on p. 1726.

(iii) The 2po-2pc bond

There is no molecule which corresponds to this bond in isolation, B, is the
nearest to it, but the bond there is partly 2s-2s is nature (see the coefficients
of the SCF LCAO MO wave function,’® which yield an s-p hybridisation 22,
33 and 47 9, for R, = 4.5, 4.0 and 3.5, respectively). It is, however, of interest,
since the angular function is no longer constant. For this bond,

D, = [%]* 7080, exp(—ar,), Y ,*Y, = cos®d,, Y ,*Y, =} (24)

with similar expressions for @ etc. The z axes are defined as pointing toward
each other, so that eqn. (9) may represent a bonding orbital. In terms of the
scaled unit of length eqn. (13) becomes

__ 2R, Rcos0,cos0 exp(— R)—S[R,%0s%0 ,exp(— 2R, ) +- Ry2cos?0zexp(—-2R)]
- n(l 4+ 8S)

R, *exp(—2R,) 9 F,2 R %exp(—2Rp)
B Rk S o I

4

+ 00520,,—1%‘:2—] (25)

where F,2? is given by eqn. (8) as
Fj2=pexp 2A1—7)R, (26)

For arbitrary R, 4 again reaches a maximum along the line B, = R; = }R.
Along this line

o080, =cos,=R,/R ‘ (27)
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so that 4,, is obtained from eqn. (25) as

R % exp(—R) + _ R*F,?
2n(1 + 8) 1 + S 3R?

This is clearly a maximum when R is as small as possible, ¢.e. when R = R,

at the centre of the molecule. A new feature arises, however, in that 4,, becomes
negative even when y = 1, when

R*F,2 = 6R?/(1 4+ 8)
Furthermore, 4,, reaches a minimum for y =1 at
6R27|}

Ay = (28)

._1+[1+1+S (29)
and at some other large value of B when y < 1. At the centre,
_ Blexp(—Ry) [,
A"—_——Gn(l 5 6—F2%(1 4 8 (30)

which is positive when y <1 for all values of R, of interest physically. At the
nuclei (say atom B)

__ R2exp(—2R,) e
4=y [ R+ 9] oh

which is positive when y<< 1. However, beyond the nuclei, cosf, changes
sign so that the first term in eqn. (25) becomes negative, and 4 will
also become negative at some finite R. Thus, in contrast to the s-s bonds,
the 2po-2po bond displays a closed region of positive ¢ values even when
y = 1 (case I), and this region encompasses the nuclei and the space between
them close to the internuclear axis.

(iv) The 2pn-2px bond

Here
a4 sinf, .
Dy=\|—| ra exp(tp,—ar,)
YA* YA sin OA Y *Y  — % (32)

and similarly for B. The axes are so defined that the angles ¢, and ¢, are
equal. 4 is therefore given by eqn. (25), provided cos?6 is replaced by (sin26)/2.
Along the line R, =

8in%0, =sin%0,=(R*— R ?)/R,? (33)
and therefore the following expressions are obtained for 4,, and 4.
__ R’exp(—R) R 02) o
An = Gai 9 ] —F1 + 8) (34)
_ —F?R?exp(— Ro)
4, = = (35)
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while at the nuclei (say at B),
_ — ¥Ry exp(—2R,)

3z
These equations show that for a z-x bond the § function is negative in the inter-
nuclear region, and positive in a cylindrical region around this. The correlation

between &, and the binding energy is therefore apparently restricted to ¢
bonds.

4,

(36)

(v) The lone pair orbital

The 4 function for a lone pair orbital on one atom is obtained by putting
A =B and § =1 in eqn. (25). For a lone pair in a 2p, orbital this yields

2 —
Sip. = 353‘%(—?1@ [00820 — E;] (37)

where F? = 1 if the orbital is unperturbed by the formation of a molecule.
In such a case the surface dp = 0 is shaped like an infinite cone. If the lone
pair orbital is affected by the rest of the molecule, then F is given by eqn.
(14) as usual, and d;,, = 0 becomes a closed surface if y <1.

ITII. MULTIPLE BONDS

For the molecular electron density function a separation into ¢ and = parts
is meaningful because those parts of the wave function belonging to the differ-
ent symmetries do not interact. For the atomic density functions, especially
when averaged over the angular co-ordinates, such a separation is not logical.
It is however possible to define conventions whereby this division can be carried
out, so that the ¢ function splits into parts that may be associated with ¢ or
n bonds and lone pairs. All the s-orbital densities obviously contribute
only to the ¢ portion of J. It is therefore the way in which the density
due to the p shells are split that has to be defined. As an example, consider the
oxygen atom which has four electrons in the (2p) shell. Averaged over all
angular co-ordinates, their contribution to ¢ is proportional to 4r2 where r
is the distance from the O atom. Two conventions for splitting up this term
are proposed here.

In the first for example for the O, molecule, it is clear that of the four 2p
electrons on each atom two eventually fill the lone pair orbital, one goes
into the = bond and one into the ¢ bond. It is then natural to split up the terms
proportional to 4s2 in the ratio of these contributions, namely 2:* towards
Orp., 7% each towards d, and J,. The partial § functions then take the form
discussed previously for two-electron bonds and the total J is the sum of its
parts:

0 = dip.+ 00+ 0 (38)

Fig. 2 shows 6 and J4 defined in this way for the O, molecule, using the SCF
LCAO MO wave function of Kotani and collaborators.!”* It is seen that ds has

* The & function for this wave function has also been published by Roux,® but there are some
unexplained differences between the two pictures.
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Fig. 2. O, molecule. 6 and 6, (10* X values

in a.u.) in a quarter plane. Calculated using
the SCF function of Kotani et al.? a).
The 6, function ((2p) shell contribution

proportional to 4r2). b) The é function.

the normal positive region between the nuclei, with a maximum at the centre.
The large positive regions beyond the atoms suggest that the bond is mainly
a 2po-2po bond. The only unexpected features are the larger maxima at 0.15
a.u. from each oxygen atom. The wave functions are not very accurate so close
to the nuclei, and it is probable that these maxima are a result only of this
inaccuracy. (The density is very large near the nuclei, and errors in J are
consequently also very large.) The total § function is negative between the
atoms in this case, but has been found positive in other multiple bonds. It
would seem. to depend solely on the relative importance of the o and n bonds.
For other multiple bonds see the ¢ functions for N, (Ref.5), NO, CO (Ref.%),
C,H,, C,H, (Ref.?), and CN, C, and C, (Ref.1?).

The second convention is particularly useful for molecules, such as H,0*,
which are planar or nearly planar and entirely ¢ bonded except for some lone
pair orbitals perpendicular to the plane of the molecule. In such a case, I
have argued that the two electrons in the 2p, orbital (perpendicular to the
plane of the molecule) remain polarised in the atomic case also. This leaves
two electrons whose density is averaged in the zy plane. Thus the (2p) shell
contributes terms proportional to 222 and (22 + y?) to é,p. and &4, respectively.
It follows that d1, = 0 and also that the additive property expressed in eqn.
(38) is lost, since 222 4 22 4 y® is not equal to 4r2. However, the pictures of
dq obtained in this way are clearer and (provided it is stated which convention
is used) it is only the clarity and simplicity of the pictorial representation

Fig. 3. Planar H,O% ion. d, (10 X values
in a.u.) in the plane of the molecule. A
quarter plane is shown. Calculated using
Grahn’s SCF function.!® The charge distri-
bution in the atomic case was assumed
to be O + 3H*', a) The J, function
with the (2p)shell contribution proportion-
al to (x* 4 y?) (or r* in the plane of the
molecule). b) The &, function with the

2p) shell contribution proportional to §r2.
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which. should determine the way in which ¢ is split up. Figs. 3a and 3b show
8¢ in the plane of the molecule for H;O*. Compare these with Fig. 5, which
shows ¢ for H,O**, when there are no lone pairs and = 4. Notice that the
one bond in Fig. 5 and 3a look the same, whereas 3b looks rather different.
Fig. 4 shows ¢ and the two d, along the internuclear axis for OH~. Compare
this with the other heteronuclear diatomic molecule, LiH (Fig. 1).

Fig. 4. OH" ion. é and §, along the inter-
nuclear axis. Calculated using Rosenfeld’s
SCF function.’® The charge distribution
in the atomic case was assumed to be O~
H. a) The 4 function. b) The J, function
(2p) shell contribution proportional to z*
(or »* along the axis). ¢) The 4, function PRA
(2p) shell contribution proportional to }r*. Y )
-1.0 ~0.5 [} 05 10

§ (a.u) = 102
§
1

distance|(au) |
1 i1

IV. RESULTS FOR OH BONDS

Figs. 5—12 show the results obtained for J for strictly comparable wave
functions in various planes through the molecules H,0, H,0*, H,O** (all
ten-electron systems).* Where possible, only half the plane is shown; the other
half is to be obtained by reflection through the axis of symmetry shown dotted at
the foot of the figures. The figures show a few contours of constant  value (d in
atomic units), and the more important maxima, minima and saddlepoints.
In all cases the OH distance is 1.8103 a.u., and it has been assumed that the
oxygen atom is neutral in the noninteracting system of atoms. In all cases
the same basic set has been used for molecular and atomic wave functions
(t.e. y=F =1 in previous discussions; eqn. (8)).

The most obvious features of these figures are that all regions of positive
¢ are confined to a sphere of radius about 2.6 a.u. centred on the oxygen atom,
and that all the atoms are in regions of negative J. Furthermore |§| is always
quite small, except near the atoms (where large errors are likely, because of
the inaccuracies of the wave functions.)

It should be mentioned that the actual electron density in the molecule
(as opposed to J) shows an almost uniform decrease from the origin outwards
with only small “humps’’ at the positions of the hydrogen atoms. Thus g itself
offers noreal clue as to the nature of the chemical bonds. In the case of §, however,
it is startlingly obvious that the regions of positive é can be correlated with
bonds or lone pairs. A detailed discussion now follows.

* The scale is shown in Fig. 5 and is the same for all the following figures. The semicircle is
marked at ten degree intervals in each figure.
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H,O++. It is easier to start the discussion with this molecule, since it con-
tains no lone pairs, but only ‘pure’ OH bonds. The wave function is the SCF
LCAO-MO (minimal basis set of Slater-type orbitals) described in Ref.18
Fig. 5 shows ¢ in a plane containing two OH bonds. There is clearly an in-

Fig. 5. Tetrahedral H,O*tion. 6 (10% x

values in a.u.) in a plane through two

OH bonds. A half Plane is shown. Calculated

using Rosenfeld’s SCF function.'®* The

atomic charge distribution was assumed to
be O + 4H*,

— 15 0 15

creased concentration of electrons (positive d) in the region between O and each
H, though these regions run into each other. The maximum value of ¢ is on
the OH line (6 = 0.059) and the saddlepoint is midway between the two
OH bonds, (6 = 0.015). The smallest values of positive ¢ are in the region
beyond the oxygen atom in the HO line (6 = 0.0024). The isobars of ¢ in the
OH bond are such that the curve J = 0.02 is roughly ellipsoidal, with the
major axis perpendicular to the OH bond. The position of Omax, 1.15 a.u.
from the oxygen atom (¢.e. about two thirds along the OH bond), suggest
that Hi+ is electronegative with respect to O (see the general discussion
about eqn.(11) above).

H,0+*. The wave functions in this case are SCF LCAO-MO (minimal basis
set of Slater-type orbitals) taken from Grahn’s paper,® for the planar molecule
and that with an HOH angle of 110°. For the planar molecule (Fig. 6) it is
obvious that the regions of positive é are connected with the OH bond and
with the lone pair 2p, orbital above and below the plane of the molecule. As
was discussed earlier, the latter can be removed in two ways, leaving in the

395 H 18 0 -17 395 H -74

Fig. 6. Planar H;Otion. § (10* X values in a.u.) calculated using Grahn’s SCF function.®

The atomic charge distribution was assumed to be O + 3H*” a) in the plane of the

molecule. b) in a plane perpendicular to that of the molecule, and passing through one
OH bond.
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plane of the molecule the function J, as shown in Fig. 3. As for the cone shaped
region of positive d in Fig. 6b, corresponding to the lone pair, it is interesting
to see how closely eqn. (37) comes to predicting its contours. According to
eqn. (37) the cone formed by the surface § == 0 has a half angle of 54°44’, com-
pared to about 55° in Fig. 6. Furthermore the maximum value of ¢ in this region
occurs at 0.43 a.u. from the oxygen atom, which is where the (2p) shell reaches
its maximum. The fact that the surface § = 0 is closed in Fig. 6 shows that the
lone pair is slightly affected by the rest of the molecule. It also indicates that the
approximation discussed previously as case IT (y £ 1) is equivalent to using
an extended basis set to describe the molecular wave function. As has been
mentioned before there is a close similarity between Fig. 4a and Fig. 5, showing
the “pure”’ OH bonds in H,0+ and H,0+*, respectively. The only significant
difference is that the marked contour enveloping almost the same volume now
has a value 0.03 instead of 0.02. The maximum is 0.073 instead of 0.059.

Figs. 7 and 8 show the ¢ function for H;O* for the HOH angle equal to
110°. The most interesting feature is in Fig. 8, where it is clearly seen that the

00 0.38°

Fig. 7. H,Otion, , HOH = 110° 8 (10 X  Fig. 8. H,Otion, / HOH = 110°. § (102 X
values in a.u.) in & HOH plane. Calculated values in a.u.) in a plane perpendicular
using Grahn’s SCF function.® to the HHH plane, passing through one

OH bond. The dotted line is the projection

onto this plane of the other two OH bonds.

OH “bonds squeeze” the lone pair from between them, with a consequent
increase in the lone pair region above the oxygen atom (maximum 0.33 instead
of 0.31 for planar H,0%; between the OH bonds the maximum in the lone pair
region is only 0.20). Also, the half of the lone pair orbital lying between the
OH bonds has its maximum closer to the O atom than the other half. The
0.33 maximum is at 0.43 a.u. from O, i.e. at the maximum for the (2p) shell.
Since in this case the 2p, orbital does interact with the other orbitals in the
wave function, it is not possible accurately to remove the effect of the lone
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pair, as was done for the planar molecule in order to obtain the ‘“pure” OH
bond. The coefficient of the 2p, orbital in the lone pair MO is 0.9397. If, there-
fore, instead of placing 2 electrons in the 2p, orbital in the noninteracting system
of atoms, one puts in only 2 X (0.9397)2, then the 2p, contribution to the elec-
tron density in the molecular and the noninteracting systems will approximately
cancel. In general terms, if 2n electrons are assumed to be in the 2p, orbital
in the atomic wave function, then it is easily found for a system with four
(2p) electrons that

¢ = 8 + (3n—2)(1—cos®9) 72—;‘-5— exp(—2ar) (39)

where 0 is the angle measured from the z axis and « is the exponent of the
(2p) shell. This formula applied to H,Ot (110°) (with n = (0.94)2 = 0.884
and 0 = 72°) gives a maximum of 0.062 for J, in the OH bond compared with
0.046 for 4. For » = 1 eqn. (39) would give 0.071 for the same quantity. In
both planar and non-planar H;O+ the maximum value of J, in the OH hond
again occurs at about 1.15 a.u. from the oxygen atom, despite the fact that
the charge in the hydrogen atom is only } instead of } as in H,0++. It would
therefore seem that the position of the maximum along the axis is not very
sensitive to the differences in electronegativity between the oxygen atom and
either H*+# or H+}, The maximum value of 8 ocours at 1.3 and 1.35 a.u. from
the oxygen atom in H;O* (110°), and HzO* (planar), respectively.

H,0. The wave functions are the SCF LCAO-MO (minimal basis set Slater-
type orbitals) for / HOH = 105° and 120° as published by Ellison and Shull.20
For the molecule with the HOH angle 105° (Figs. 9, 10, 11a), positive regions

B e . T

2 0 -5 ~3.9 -0.47

Fig. 9. H,O molecule, /HOH = 105°. Fig. 10. H,0 molecule, / HOH = 105°.

4 (10* X values in a.u) in the plane of ¢ (10% X valuesin a.u.) in a plane perpendi-

the molecule. Calculated using Ellison cular to that of the molecule and bisecting
and Shull’s SCF function.?® the angle HOH.

of § are again clearly associated with the lone pairs and the OH bonds. There
are, however, a few interesting deviations from the picture described so far.
Firstly, the OH bond is much ‘“thinner”, as if there were a repulsion between
it and the lone pair region. Secondly, the lone pair maxima occur above and
below the plane of the molecule, at an angle of about 15° from the z axis,
away from the z axis, away from the hydrogen atoms (the z axis is the one

Acta Chem. Scand. 18 (1964) No. 7



ELECTRON DISTRIBUTION IN BONDS 1735

Fig. 11. a) H,0 molecule, / HOH = 105°. 4 (102 X values in a.u.) in a plane perpendicular

to that of the molecule, and passing through an OH bond. b) H,0 molecule,

/HOH = 120°. § (10* X values in a.u.) in the same plane as for a). Calculated from
Ellison and Shull’s SCF function.?®

perpendicular to the plane of the molecule. It is in fact the z axis as defined
by Ellison and Shull). Fig.10 shows this well. Another indication that the lone
pair is considerably perturbed by the OH bonds is that the maximum occurs
at a greater distance from the oxygen atom (0.52 a.u. instead of 0.43 a.u.)
than the maximum of the (2p) shell. The value of the maximum itself (0.35 a.u.)
is larger than in the ‘“pure’” lone pair of planar H;O+ (0.31). However, in the
wave function the 2p, orbital does not interact with the others, and it should
therefore be possible to subtract its contribution to ¢ in the plane of the mole-
cule as before. When this is done, the maximum value of §, in the OH bond is
still on the internuclear axis and has a value of 0.049 compared to § = 0.027.
The distance of the maximum from the oxygen atom is 1.2 a.u., somewhat larger
than in the other molecules, which is unexpected since O should be more electro-
negative with respect to H than with respect to H*+* or H+%. This is further
evidence that the OH bond and the second lone pair region (which cannot
be allowed for in any realistic way since it involves the same atomic orbitals
as form the OH bonds) repel each other strongly. (Compare also with the dis-
cussion on the gross charge of the oxygen atom in Ref.!8).

When one turns to H,0 with /HOH = 120° (Figs. 11b, 12) the most
important finding is that despite the change in the HOH angle of 15°, the picture
of the ¢ function in the plane of the molecule remains essentially unchanged.
(It must be remembered that Ellison and Shull’s coefficients are rounded off
to the fourth decimal place, and since ¢ itself is a small difference between

Fig. 12. H,0 molecule, /HOH = 120°.
d (102 X values in a.u.) in the plane of = o0
the molecule.
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larger numbers involving these coefficients, small changes in &, say of the other
of 1073, are not very significant). The maximum in the OH bond is exactly
at the same place as in the previous case, instead of having followed round
with the internuclear axis (cf. Figs. 9 and 12). It is one of the unsolved problems
of the SCF method that the energy minimum in this approximation is found
for an HOH angle of 120° rather than for the experimental value of 105°
Other methods used to obtain wave functions do predict the correct configura-
tion, and Bader and Jones # have published electron density maps for H,O
(105°) obtained by minimising the net forces acting on the nuclei. For their
best wave function they obtain a density distribution suggestive of bent
bonds. This result is not supported by the pictures of the § function obtained
here, since the angle between the maxima is 105° in both cases (/ HOH = 105°
and 120°).

OH-. TFig. 4 shows the J function and the §, functions defined in the two
ways mentioned above, along the internuclear axis. Again an SCF LCAO-MO
function (minimal basis set of Slater-type orbitals) was used.’® In this case
the OH bond is no longer similar to that of H{O*+ and the maxima occur at
the H nucleus, just in front of the oxygen atom and behind the oxygen atom.
The first and last maxima correspond to an OH bond with considerable 2po
character. The second maximum is probably an artifact resulting from the use
of an approximate wave function. The J function also shows that H is electro-
negative with respect to O~, which is not surprising. A comparison with the
results for LiH shows that the position of the maximum at the H nucleus may
be a result of using the same exponents in the molecular and atomic functions
(compare curves a and c of the LiH results). It seems that for diatomic molecules
with large dipole moments the § functions shown in Figs. 1 and 3 are typical.

V. DISCUSSION

(i) Maximum 6 and bond strength

Table 3 shows the bond strength of an OH bond (dissociation energy
divided by the number of bonds) for the different molecules, compared with
the overlap population per bond 2 and with the maximum value of é (or d4
in those cases where this better represents the OH bond). It is seen that there

Table 3. Relation between dg (max) and the bond strength.

molecule bond strength do (max) Overlap population
(a.u.) (a.u.) per bond
H,0 (105°) 0.114 0.049 0.415
H,0*t (planar) 0.216 0.074 0.514
H,0+ (110°) 0.202 0.062(0.071) 0.483
H,0++ 0.146 0.059 | 0.409
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is a correlation between the bond strength and both the overlap and the J4
function, but that the latter is much better. (Note that J, is defined by the
second convention discussed in the third section). The OH- molecule is not
included because the J function in the OH bond is so different.

The correlation between dumax and the bond strength found here confirms the
similar results of the calculations made on the simple symmetrical bonds in
section II.

(ii) Total increase in electric charge in bonds

A very rough estimate of the total increase of charge in the positive J region
can be obtained by assuming the region to be an ellipsoid with a constant mean
value of 8. For the OH bond in H,0* (planar) this estimate gives [, dd 7 = 0.1
electrons per OH bond. In the lone pair a similar estimate yields ~0.6 electrons
(for a pure lone pair the answer should be %, since there are assumed to be 2
electrons in that orbital in the molecule, but only 4 on average in the noninter-
acting oxygen atom). The change in electron concentration on bond formation
is therefore quite small.

(i) Distortion of atomic orbitals

In the planar H;O* molecule, J, (defined by the second method of section
I11) is negative above and below the oxygen atom. This shift of the electrons
into the plane of the molecule could be described in terms of a distortion of the
(1s) and (2s) orbitals into ellipsoids. Similarly the hydrogen (1s) orbital can
be described as being distorted and pulled in towards the oxygen atom, thus
contributing to the increase in electron concentration between the atoms.

(iv) Conclusion

The contours of the 4 functions for these molecular orbital wave functions
show up in a most remarkable way the localised position of the bonds. This
is a most satisfying result, since, as was suggested in the introduction, the
concept of a bond has been in danger of being swamped and hidden by the
increased complexity of the accurate wave functions obtained in recent years.
The present analysis shows that the connection is very close though hidden.
In my opinion the abstraction of chemical ideas from such wave functions
will best be done along the lines indicated in this paper.
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