The Iodine Content of Swedish Dairy Milk

G. WIDSTRÖM, C.-B. THORELL and B. ÅBERG

Department of Clinical Chemistry, Stockholms läns Centrallasarett, Danderyd,
and Department of Clinical Biochemistry, Royal Veterinary
College, Stockholm, Sweden

The Swedish dairy milk iodine-127 content was determined and evaluated with regard to its protective effects against thyroidal uptake of iodine-131 from fall-out.

During the first years of life milk dominates as food and to a considerable extent this milk comes from cows. For the synthesis of thyroid hormones children depend on their iodine intake and thus on the iodine content of dairy milk. The iodine content of the milk is also of interest because milk is more or less contaminated with radio-iodines formed by fission when nuclear weapons are tested, in case of reactor accidents etc. The iodine isotopes 129–136 might occur but due to physical half-life and atom per cent formed, only two radio-isotopes are of importance i.e. iodine-131 and iodine-132. Iodine-132 is formed by decay of tellurium-132 but its half-life is only 2 h. Iodine-131 has a half-life of 8 days.

In this article the variations of stable iodine in dairy milk from some Swedish dairies will be discussed together with the contamination with iodine-131 observed in 1962. The 1961–1962 series of nuclear tests gave rise to contamination of milk with iodine-131.

MATERIAL AND METHODS

From April 1962 to March 1963 milk samples were taken from six Swedish dairies once or twice monthly. The content of inactive iodine was determined according to Barker et al.¹ as total iodine. All analyses were made in duplicate. The standard deviation (S. D.) for a single determination was ±2.5 µg per 1 milk.

RESULTS

In Table 1 the monthly mean values for the six dairies are given as µg of iodine per 1 milk.

DISCUSSION

It is obvious from the values in Table 1 that there is a considerable monthly variation of iodine content in the milk. The lowest values occur during the sum-
Table 1. Total iodine in milk from six dairies in µg/l, April 1962 to March 1963.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Malmö</td>
<td>107</td>
<td>53</td>
<td>31</td>
<td>42</td>
<td>41</td>
<td>58</td>
<td>45</td>
<td>41</td>
<td>65</td>
<td>63</td>
<td>50</td>
<td>43</td>
<td>53 ± 20</td>
</tr>
<tr>
<td>Kalmar</td>
<td>44</td>
<td>31</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>21</td>
<td>29</td>
<td>22</td>
<td>30</td>
<td>52</td>
<td>56</td>
<td>30</td>
<td>30 ± 18</td>
</tr>
<tr>
<td>Skara</td>
<td>74</td>
<td>22</td>
<td>21</td>
<td>24</td>
<td>33</td>
<td>64</td>
<td>109</td>
<td>64</td>
<td>52</td>
<td>76</td>
<td>65</td>
<td>55 ± 29</td>
<td></td>
</tr>
<tr>
<td>Eskilstuna</td>
<td>66</td>
<td>48</td>
<td>14</td>
<td>20</td>
<td>17</td>
<td>25</td>
<td>37</td>
<td>63</td>
<td>66</td>
<td>66</td>
<td>78</td>
<td>64</td>
<td>47 ± 21</td>
</tr>
<tr>
<td>Östersund</td>
<td>56</td>
<td>60</td>
<td>50</td>
<td>28</td>
<td>33</td>
<td>29</td>
<td>31</td>
<td>41</td>
<td>54</td>
<td>40</td>
<td>42</td>
<td>28</td>
<td>41 ± 11</td>
</tr>
<tr>
<td>Boden</td>
<td>22</td>
<td>27</td>
<td>16</td>
<td>22</td>
<td>56</td>
<td>54</td>
<td>68</td>
<td>33</td>
<td>39</td>
<td>26</td>
<td>15</td>
<td>51</td>
<td>36 ± 25</td>
</tr>
<tr>
<td>Average</td>
<td>59</td>
<td>49</td>
<td>24</td>
<td>25</td>
<td>32</td>
<td>37</td>
<td>45</td>
<td>52</td>
<td>53</td>
<td>49</td>
<td>53</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

mer months, which could be due to dietary changes. The average monthly values vary between 24 and 59 µg/l whereas in single determinations values have been found varying between 11 and 116 µg/l. The radio-iodine (131I) content of Swedish dairy milk between August 28th and December 3rd, 1962 varied between 0 and 406 pC/l. The measurable values in connection with fall-out from nuclear tests varied between 15 and 406 pC/l². Determinations of radio-iodine in milk from single farms during the autumn 1962 gave the maximal value of 3000 pC/l². The mean intake of iodine-131 in Sweden during 1962 was about 30 000 pC².

At an expert meeting in Oslo in September 1962 it was decided that an accumulated yearly intake of 200 000 pC of iodine-131 warrants actions from the health point of view³. The maximal allowable initial concentration of iodine-131 in milk after a reactor accident in Sweden would be 70 000 pC/l corresponding to a yearly intake of 800 000 pC. The highest observed radio-iodine content in milk from a Swedish farm (3 000 pC/l) corresponds to a yearly accumulated intake of 100 000 pC².

If the observations on stable iodine and radio-iodine of Swedish dairy milk during 1962 is used for determination of the specific activity (C of 131I/g iodine) in milk the variation is 0 - 17 × 10⁻⁸. For single determinations (in single farms and single dairy samples respectively) the maximal value will be 27 × 10⁻⁸. It is well known especially since radio-iodine has been in general use for diagnosis of thyroidal disorders that inactive iodine greatly reduces the radio-iodine uptake by the thyroid gland. It is thus from a hygienic point of view important that the milk contains as much inactive iodine as possible without causing allergic conditions in disposed milk drinkers. Furthermore, in cases of expected radio-iodine fall-out, it is helpful if this content is as constant as possible. It does not matter, however, if the milk iodine comes from the cow's udder or from iodine-containing sterilizing agents used in the farms and/or dairies.

The daily intake of inactive iodine for adults is stated to be about 50 µg⁴. Determination of urinary excretion of iodine in 89 persons from around Stockholm who were not taking iodinated medicines gave a mean daily excretion value of 104 ± 49 µg which obviously corresponds to a considerably higher mean

Acta Chem. Scand. 17 (1963) Suppl. 1
intake of iodine. The daily requirement for children should be proportional to
the caloric needs and thus be in the order of 25–50 μg. With a milk consumption
of one liter per day the milk iodine content should be at least 25, and preferably
50 μg/l. From the values in Table 1 it is clear that the milk examined contains
just this amount. With the present iodine content however no depressing action
on the thyroidal uptake of radio-iodine can be expected. This is especially true
for the summer months. It seems therefore that it should be of value if the iodine
content of dairy milk was increased. The best way to achieve this would no doubt
be to increase the iodine in the minerals given to the cows.

Acknowledgements. The investigation was aided by grants from The Research Institute of
National Defense, The Swedish Agricultural Research Council and The Atomic Energy Rese-
arch Council.

REFERENCES
2. Edvarson, K., Fredriksson, L., Lindell, B. and Åberg, B. Radioaktivitetsmätningar på livs-
3. Rapport till de nordiska ländernas strålskyddsmyndigheter från nordiskt möte mellan strål-
skyddsexperter från Danmark, Finland, Norge och Sverige, Oslo, September 1962. Stenc.
New York, 1952.

Received April 3, 1963.