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Interpretation of Relaxation Times
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When a reaction system is displaced from equilibrium it returns to
equilibrium in the quickest possible way. If the displacements from equi-
librium are small the kinetics are characterized by a number of relaxation
times which is equal to the number of independent concentration variables.
These relaxation times depend upon the various rate constants and equi-
librium concentrations an(}i) are to be identified with single steps only in
special cases. The expressions for the two relaxation times for a simple
system of general interest in connection with enzyme kinetics are given
and simplified for various special cases.

For a complicated reaction system the approach to equilibrium is described
by a very complicated equation, if indeed the simultaneous rate equations
can be integrated. However, in connection with the development of relaxation
methods for studying very fast reactions Eigenl- has pointed out that if the
initial displacement of the various concentration variables from their equilibrium
values is small, their subsequent change with time may be expressed as a sum
of exponential terms. Each term is characterized by relaxation time 7 (the time
for that term to fall to 1/e of its initial value), and the number of relaxation
times is equal to the number of independent concentration variables. The general
theory for the calculation of relaxation times has been given®®, and these methods
have been applied to enzymatic reactions”8. However, the subject is sufficiently
complicated so that it appears desirable to discuss the application of these ideas
to a relatively simple system of general interest.

k12
1.A+B4+Ca2 AB4C

ko 1

4. AC + B=—=3. ABC
k34
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The system can exist in four states and the rate constants indicate the initial
and final states for each reaction. In this mechanism, A could represent enzyme,
B coenzyme and C hydrogen ion; or A could represent antibody, B hapten
with C not representing anything, that is A and AC would be isomers. The time
variation of any concentration variable after an initial small displacement from
equilibrium (as by a sudden temperature change®) would be given by

¢ —¢; = Ac; = Kye?/™ - Kye™/ " + Kge/ 2)

where ¢; is the equilibrium concentration.

The expressions for the relaxation times for system 1 would be obtained as
follows: There are 6 concentration variables and 3 conservation relations so that
there are 3 independent concentration variables, 3 independent rate equations
and 3 relaxation times. Any three independent rate equations for the system are
written down. These rate equations are linearized by replacing each concentra-
tion (X) by (X) 4+ 4(X), where (X) is the equilibrium concentration and A(X)
is the displacement from equilibrium. When products of concentrations are
multiplied out, terms involving 4* are ignored because the displacements from
equilibrium are small. In this way the three differential equations may be
reduced to the form

d4(A)

T = ayA(A) + a;p4(AB) 4 a;34(ABC) (3)
dAg:BZ = ayA(A) + a»A(AB) + ay3A4(ABC)
%A;BC—)‘: ag4(A) + agA(AB) 4 ag34(ABC)

According to the theory of linear differential equations the three relaxation
times are obtained by solving the determinant

1 .
ay + — A a3
1 _
ag A+ A =0 (4)
1
agy agy agy + -

Since the a’s are functions of rate constants and equilibrium concentrations
this would lead to very complicated expressions for the general case. However,
considerable simplification results if the number of steps is smaller or some of
the steps are so fast that certain substances can be considered to remain in equi-
librium during a relaxation process. Also fast steps can be treated on the assump-
tion that slow steps do not occur. Certain special cases derived from the general
system can be treated separately.
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One step. The simplest special case is one in which there is a single reaction!-3.

kg
A+B=AB
kst
1 — —
7: ko + k12 [(A) 4 (B)] )
where (A) and (B) represent equilibrium concentrations.
k
For the isomerization reaction A ‘—1\2 A
1 Koy
—=ky + kyg (6)

-=
so that changing a bimolecular step to a unimolecular step has the effect of re-
placing the sum of concentrations by 1.

Two steps. There are three qualitatively different sequences of two reactions

in scheme 1.
ki kg
A4+B+4+C=2AB+C=ABC (7)
1 ks
ky ks
AC4+B=2A+B4+C=AB+C (8)
kg 21
kg ks
AC+B=ABC=AB+4C 9)
ks, [

Each of these systems is characterized by two relaxation times which are obtain-
ed by solution of a quadratic equation. The complete expressions are quite com-
Flicated functions of the rate constants and equilibrium concentrations and allow
or a possibility that would not allow the separate experimental determination
of 7; and 7,, that is, the possibility that these parameters are of the same magni-
tude. In general 1/7; + 1/75 = a;; + ay, so that if 7, ) ) 7; there will be a rela-
tively simple expression for 7;. Such expressions are given below. Another special
case which simplifies the mathematics is that in which the square root term
(1 —x)'/2 arising in the solution of the quadratic may be approximated with
1—x/2. In this way the following expressions are obtained for mechanism 7.

11 — ko +ksz [A) + (B)] + ko + koy [(AB) + (©)] (10)

T

1

Ty T

= Koy {kps + kog (AB)} + ki [(B) + (B)] | koo + koy [BB) + (O1}  (11)
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These expressions indicate that studies of the dependencies of 7, and 7, on various
concentration variables could yield the four independent rate constants in this
mechanism. If 7, and 7, are not very different the complete expressions should
be used to evaluate the rate constants. In any case the values of the various rate
constants must be substituted into the quadratic expressions to make sure that
the approximation used was satisfactory.

If one of the steps is equilibrated much faster than the other, these expressions

take on simpler forms. If ky + ki, [(A) 4 (B)] }) kys + kss [(AB + (C)], 7, is
given by equation 5, and v, by: ’

1 154 1@+ B)
— k32+k@3 {(AB)+ K21+(K)+(§)}

T2 -
where Ky = kj /k;;. Equation 12 may be derived directly, as discussed below,
without solving a quadratic equation.

A further special case of interest occurs when B is buffered. For example,
B might be hydrogen ion in a buffered solution and the rates of proton gain
by A and loss by AB may be fast compared with other steps in the mechanism.
In this case

(12)

,—11 — ky -+ ki3 (B) (13)
1_ i o (B(©C)
—_— ks + Koy [(AB) + Ko+ (ﬁ)] (14)

Terms in [(A) 4 (B)] are replaced with (B) because (B) does not change during
the reaction, and the bimolecular reaction A 4 B becomes a pseudo-unimolecu-
lar reaction with a rate constant proportional to (B).

If the second step is fast ky; + kg [(A) + (B)](( kss + ko3 [(AB) + (C)]

= ks + s [(BB) + (©)] (15)
1 T L (B [Kss + (AB)]
— =k [(A) 4+ (B)] + K s — 16
= e LB £ (B e = F E0 (16)
where Ky, = kgy/kos.
If in addition C is buffered
1 _
_TT - k32 + k23 (C) (17)
1 - = ky K
— =k [(A) + (B)] + 22—
o = K [(A) +( )]+K32+(C) (18)
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If AB in mechanism 7 is in a steady state one of the rate equations is eliminated
(d (AB)/dt = 0), and the expression for the steady state relaxation time becomes

_ Fouk o ks (©) [A) + (B)] + (A) (B)) 19
k?l + k23 (C)

If in addition C is buffered, the term in (A)(B) in the numerator is eliminated.

1
T

The mechanism

k12 k23
A+B = AB = AP (20)
ke kg

may be considered to be a special case of mechanism 7. In the expressions for 7
and 7, terms in [(AB) 4 (C)] are replaced by 1 since the bimolecular reaction
of AB with C has been replaced by unimolecular reaction. The term in ky(AB)
vanishes. The relaxation times (cf. Ref. 4) given by expanding the square root
term are

- =kt ks o+ ks [ + (B) (21)

L = k21 k32 + k12 (k23 + k32) [(X) + (E)] (22)

T1 Tg

In another special case one of the reactants in the bimolecular reaction under-
goes isomerization rather than the product, as in reaction 20.

ki kay
AB’4+ C = AB+ C = ABC (23)
kay kse
In this case the relaxation times given by expanding the square root term are
1 — _
71 = kyy + kio + ki + koy [(AB) + (C)] (24)
1 — —_—
E = ks (kg + ka1) + ka1 kos(AB) + kyp ks [(AB) + (C)] (25)

Three steps. If one of the reactions in system 1 is eliminated there will still be
three relaxation times, and the solution of a cubic equation will be required
unless there is a big difference in the rates of equilibration of different steps.
If two of the steps are fast it is just as easy to consider all four steps.

Four steps. We will consider the case where the reactions involving C are
considerably faster than the reactions involving B, and that C is buffered. In
considering the long relaxation time A and AC may be assumed to be in equi-
librium, and the same will be true for AB and ABC. The relaxation process con-
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sidered is simply a slow equilibration between the two equilibrium pairs A 4 AC
and AB - ABC. This may be considered as an example of a simple bimolecular
association with

Tl = kdissoc + kassoc [(K) + (E) "I" (E)] (26>

The sum (A) 4 (AC) is included in the concentration term since these two
forms are in equilibrium and must be treated together. In the absence of C this
expression must reduce to that for the upper line of scheme 1, namely equation
5, and at very high C concentrations the relaxation must be achieved by the
lower path so that

L =kt kg [(AC) + (B)) (27)

This is satisfied if the following forms are used for kgjeo, and kygsoc

o = ks 4 l€34( C)/Kgy (28)
1+ (C)/Ks,

- ks + 1‘43(6)/ Ky (29)
14 (C)/Ky

where Kg» = kgo/kog and K3 = kys/ksq. If C is not buffered more complicated
expressions are obtained.

When certain reactants may be assumed to be in equilibrium the expression
for the relaxation times may be derived directly without deriving the more
general expression and simplifying. For instance in reaction 7, if the first step is
in rapid equilibrium, one can write for the instantaneous equilibrium at any
time during the slow relaxation

K, — Rt _ [+ AW () + AB)] _ [(R) + AW [B) + AA)]
S (AB) + A(AB) (AB) + A(AB) -

where the concentrations are expressed as final equilibrium values plus a dis-
placement. This yields the following relation between A(A) and A(AB)

Ky
AR = AAD) [(A) + (B)] ey

Using this relation, one can describe the slow relaxation by a single differential
equation in 4(ABC) = —[4(A) + A(AB)I:

LI(ABC)
dr

— Ky [(XE) ~A(ABC) — (j:) (;\f) ‘f (ﬁ)][«i) —A(ABC)] ~ky,[(ABC) —A(ABC)]  (32)
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This equation leads directly to equation 12 for 7,. Expressions for the slow re-
laxation time in other cases where a fast step can be assumed to be in equilibrium
can be derived in a similar way.

It has been impossible to give all the forms for the expressions for the relaxation
times of these and related cases in this short paper, but the authors will be happy
to supply the additional expressions in mimeographed form to those who are
interested.
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