Mechanism of Peptization of Aluminium Soap Gels in Hydrocarbons

STIG FRIBERG

Research Institute of National Defence, Sundbyberg, and Institute of Physical Chemistry, University of Stockholm, Sweden

Two theories of the mechanism of peptization of aluminium soap gels have been given earlier. Gray and Alexander suggested that the peptizing molecule was coordinated preferentially to the metal ion and the polymeric chains were consequently broken. Bauer et al. gave some years later a new theory by which the peptizer was connected to the carboxyl group of the soap by a hydrogen bond. This reaction induced a disturbance of the symmetry in the carboxyl ion and changed the absorption in infrared from 6.3 µm (symmetric carboxyl ion) to 5.8 µm (carbonyl absorption of an associated carboxylic acid). The association complex chains were supposed not to be broken, only weakened. Yamamato has recently published a great many spectra of alumminium soap gels peptized by different compounds and has concluded that the main mechanism must be hydrogen bonding of the peptizer. In the present work gels of very pure aluminiumhydroxide-diestearate in dry cyclohexane have been peptized by octodecanoic acid, 1-octadecanol and octadeicyamine. The chain length has been the same both of the soap and of the peptizers in order to eliminate the influence of this variable, which can be pronounced. The acid and the alcohol caused only a slight change in the rheological properties of the gels, and the change in infrared spectra can well be explained by the hydrogen bond mechanism. The amine on the other hand made the gel liquid and changed the absorption in infrared in a quite different way. The absorption at 6.3 µm, representing intermolecular coordination of the carboxyl ion, did not change to 5.8 µm but to 6.2 µm, which band represents intramolecular coordination.

These results give evidence of a new peptization mechanism, where the peptizing molecule changes the coordination of the carboxyl ion. Details of results and of research devices will appear later in a more complete report.

Acknowledgement. The author wishes to express his thanks to Laborator P. Atterby for introducing him in this field of research and to Professor A. Olander for his encouraging interest and valuable advice.