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Vibrational Mean-Square Amplitude Matrices

XXI. Coriolis Coupling Coefficients in Linear Symmetrical
X.Y, Molecules

J. BRUNVOLL and S. J. CYVIN

Institutt for teoretisk kjemi, Norges tekniske hggskole, Trondheim, Norway

Coriolis coupling coefficients ({-values) are studied for the linear
symmetrical X,Y, molecular model. The C-matrix method is applied.
The ({-values of the type Xt X II; are designated (;, and {,, and
certain relations are deduced for these quantities, viz.

(@) 81a* + Lo =1

(b) A 81 + As Cs4? expressed in terms of force constants.

(¢) 4, 012 + 4, $y® in terms of mean-square amplitudes.

In the present work the Coriolis coefficients! ({-values) of rotation-vibra-
tion for the linear symmetrical X,Y, molecular model (symmetry group:
Dy;) have been studied. In particular, the connection between the {-values
and X-matrix elements has heen established. Similar equations connecting
¢ and X have been given previously for the planar symmetrical XY, molecular
model,? and the bent symmetrical XY, model .3

GENERAL METHODS

The (@-values (¢ = =z, y, z) for a molecule may be calculated, if the L
matrix is known, according to one of the following three matrix relations ¢,

fa = Lt cai—: 1)
te =T G1CeT (2)
ta =LCeL (3)

Here L is the normal coordinate transformation matrix (S = LQ)5. G is

the well-known kinetic energy matrix in Wilson’s notation 5. C@ and C@ are
certain matrices introduced by Meal and Polo?, and one has

0o = G1 0o Gt (4)
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Eqn. (2) represents a similarity transformation. Other similarity transforma-
tions may be produced, e.g.,%¢

Ale=LFCeL? (5)

4{¢ =L1X(CeL (6)

From the characteristic equations corresponding to the similarity transforma-

tions (2), (5), (6), interesting relations for {3-values may be deduced. In parti-

cular, eqn. (6) leads to the connection between (%-values and X-matrix ele-

ments, where X denotes the mean-square amplitude matrix 7. Also 4, F and
4 in eqns. (5) and (6) have their usual meaning 7.

To derive the relations for {-values from eqns. {2), (5) and (6), the Ce,

G1Ce and Co matrices are required. These matrices have been determined

in the case of linear symmetrical X,Y, molecules, and are reported in the
following.

Ca-Matrices

The C2-matrices (e == z, y, z) are obtained by the vector method of Meal
and Polo ¢ according to

Ce; = ‘f/"k(‘_s;k X 8j) * €a (7)

where the summation is taken over all atoms in the molecule, g, is the inverse
mass of atom k, s denote the well-known s-vectors 5, and ¢4 is a unit vector.

The result may be presented in terms of submatrices, which in the here
considered case may be classified into:

(i) Type Z,* X Il ) .
(ii) R 27:+ X Hif for C* and ¢
(iii) Type II, X II,)

(iv) > I, X II.| for ¢*

The z-axis is chosen as the molecule axis (cf. Fig. 1 of Ref.8).

The same symmetry coordinates were used as previously 8, and the follow-
ing result was obtained for the C%-matrices. Since these matrices are skew-
symmetric, only the elements above the main diagonal need to be specified.

(iy Zy* X II, type submatrix of C*.

Sl SZ S4a S4b
Sy : 0 0 (D/R)%(oux + py)
S, 0 —(2D|R)*ou,
S, 0

Sy | (skew-symmetric)
The same type for Cv:

Sl S2 S4a Sdb
S [ - 0 —(D|R)% (ops+1y) 0 71
S (2D[R)" ou,

2
S4a
Sy | (skew-symmetric)
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(i) Zu* X IT +ype submatrices of C* and C*:

8 Su Sss Sy Ssa Ssp
S - 0 (DR (utu) T - —(DIRY* (uxtpy) O
S| (C) 0 (©) 0
Sg | (skew-symmetric) e (skew-symmetric) a
(iii) 17, x II, type submatrix of C*:

SM S4b

Swul - (DIR) (0% + ﬂy)"'
Sy ! (skew-symmetric) B

(iv) IT < II, type submatrix of C":
Sy Ssa

Sl r  (DIR) (ie) ]

S, (skew-symmetric) B

Here p, and u, are used to denote the inverse masses of the X and Y atoms,
respectively, and the following abbreviation has been introduced:

e =1+ (2R/D) (8)
R and D denote the equilibrium bond lenghts of X —Y and X —X, respectively.

GlCe-Matrices

The G'Ce-matrices may be divided into submatrices of the same types
as in the case of C%. As a contrast, however, they are in general not skew-
symmetric. The obtained result is given in the following.

(i) 2t X II, type submatrix of G1C":

S0 0 0 (D/R)

S, 0 0 O —(2R/D)*

Sul 0 0 0 0
fa b 0 0

45

a = —(R[D) % (¢ tx + pt5) (¢° #x + 1)
b = (2R|D)* o p0ux + uy)*

The same type for GC:

S 0 0 —(D/R)% 0
S, 0 0 (2R[D)*% 0
S| —a—b 0 0
S, 0 0 0 o |

For the meaning of ¢ and b, see above. p is defined by eqn. (8).
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(i) Z,* x I, type submatrices of G1C* and G1(:

(G1CY) (G1)

N 0 0 (D/R)Vt —(D/R)%» 0
Sya 0 0 l | (R/D)Vs 0 0
Syl —R/ID% 0 0 o |
(iii)  I7T, x II, type submatrix of G71C*:

sl —1 01
(iv) IT, x II, type submatrix of G1C*:

w0 17
Syl —1 0|

C*Matrices

The C*-matrices (cf. eqn. 4) may be presented again in terms of submatrices
similar to those of C%. C?% as well as C°, is skew-symmetric.

(i) £t x II; type submatrix of C":

8,7 - 0 o0 (B/D)*% (®ux + py)*

S, 0 —2%(R/D)h (e*ux + py)™
Sy 0

Sl (skew-symmetric) |

The same type for C’:

Si 7 0 —~(BIDY% (%uy + ) O
8, 2% (B/D)" (e + py)™ 0
S4¢ 0
S| (skew-symmetric)
(ii) Zu* x IT, type submatrlces of C* a,nd ¢
872 0 (BD% (s + ) T[T . —(RIDE (e + ) O
Sl (C9 0 (@) 0
S5 | (skew-symmetric) | (skew-symmetric)

(iii) I7,x IT, type submatrix of C*:

S| - (BID) (@Ppctpy)? “‘
Sp ! (skew-symmetric) |

(iv) I, x II, type submatrix of C":

Ssa| - (BID) (tny) " —l
85,1 (skew-symmetric) |

ALTERNATIVE METHODS FOR DETERMINING THE G-:C® AND C* MATRICES

The above results for the matrices GC® and C¢ = G~ C2G™! were found
simply by matrix multiplication. For convenience, the G and G matrices
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based on the presently applied symmetry coordinates are given in Table 1
and 2, respectively. The expressions are consistent with previously published
results.?10

Alternative methods for determining the mentioned matrices have been
proposed 11, and are based on the s vectors and Polo’s €° vectors 12. One has
(see also eqn. 7)

(GCa);; = f (€% X 8jx)-€a *
C§ = Zk 1 Q% X @) €a o

The derivation of @° vectors has been performed in the present case of linear
symmetrical X,Y, molecular model. This subject will be communicated later.

Table 1. G matrix for linear symmetrical X,Y, molecular model (Amu-)*

S, S, Sy
g: @2;;”13 _2/2;;:”‘{
Ss x + uy
Sy or ) Ssia or b)
S, (DIR) (¢*ux + my)
Ss (DIR) (Bx + uv)

* Not given elements are zero.

Table 2. G matrix for linear symmetrical X,Y, molecular model (Amu)*

S, S, S,
Sy py? 2-Yepuy?
S, 2-Y%puy™ Hpx+uy) (pxpuy)™
S (ux+uy)™?
Sy or b) Ss(a or b)
Se (BID) (e*ux + pv)™*
S (BID) (ux + #y)™

* Not given elements are zero.
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(e-Matrices

The (®-values may be given in terms of the {2-matrices, which have the
same form as the above studied C%-matrices. Hence the {%-values may also
be classified into the types (i)-(iv) as given above. Most of these (4-values
are trivial in the sense that they are independent of the force constants of the
molecule. They are given in the following.

(Zwt X 11,) Ca’,csbz—zs,}t'sazl
(HE X Hg) Ccaflb:l
(Hu X Hu) Csafsbzl

The remaining (non-trivial) Coriolis coefficients are of the type Z,* x II,,
viz.,

1= —"C1%a, which will be denoted by ¢,,

Lao=—"C1s1a, which we denote {,,.

Relations connecting ¢, and ¢,

The similarity transformations (2) and (5) lead to the characteristic equa-
tions 4

|GICe—oE |=|{2—0E|=0 (11)
and
|FCe—yE|=|A{*—yE| =0 (12)

respectively. These relations have been applied to the present submatrices
of the type X,* x II, with the final results as given below.

C142+C242=1 (13)
1818 + A980s® = Fi(opx + py)X(@%sx + uy)?

+ 2F0%ux™(0ux + pv)?

—2'hFg0ux(oux + uv)(@%x + iy) ™ (14)

From these equations the absolute magnitudes of ¢ may be calculated. Another
relation, similar to eqn. (14) may be produced, using mean-square amplitudes
rather than the force constants. This procedure will be treated in some details
in the following.

Application of mean-square amplitudes. By means of the similarity trans-
formation (6) one obtains &

| ZC%—»E|=| 4¢*—*E| =0 (15)
This relation has been applied to the present case (Z, * X II,) with the result
—u =X (X 15142 + 2:0p + 22 120—14624) =0
{ — 13— A y( 418147+ A5L00") =0
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where Z}'M_a.nd C,, are the appropriate elements ofthe X, + x IT, type submatrix
of C* or C’. The coefficients of » have been equalled, giving

A1C142 + 42C242=_ _ - -
(Zy/4y) (2101 + 250532 + 2 21301404))

We made use of the relation
2,/4,= Gy =(D|R) (¢*nx + 1y)
Finally we obtained, after inserting for C, and Cj,,:

416142 + 425242 = .
[Z1+ 2R|D)Zy—2"(R|D)Z,] (0%x + py) ™" (16)
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