The Fractionation of Ethanolamine Phosphatides of Ox Brain

OSSI RENKONEN

Department of Serology and Bacteriology, University of Helsinki, Finland

In 1961 Hanahan and Watts\(^1\) reported that acylated alkoxoy glycerophosphoryl-ethanolamines are decylated more slowly than phosphatidylethanolamines under mild alkaline conditions. This finding allowed the final purification of the "native alkoxo cephalins" of bovine erythrocytes. In 1962 Renkonen\(^2\) isolated "native alkoxo lecithins" from human serum by removing quite large amounts of phosphatidylethanolamine with a similar method. In addition, Renkonen\(^2\) recently found conditions where the diacyl phosphatides can be eliminated with mild alkaline treatment from native plasmalogens too. This report describes preparative fractionation of highly purified ox brain ethanolamine phosphatides with mild alkaline and mild acid\(^4\) treatments, which yielded fairly good concentrates of all the three component lipids of the original mixture, i.e., of phosphatidylethanolamine, corresponding native plasmalogens, and "native alkoxo cephalins".

Ox brain cephalins were isolated and fractionated essentially as described by Folch\(^5\). The fraction V was further purified on DEAE cellulose\(^6\) and on silicic acid\(^8\), which gave a pure preparation of ethanolamine phosphatides (Table 1) containing 57 ± 8 % native plasmalogens, about 4 % native alkoxo phosphatides and 37 ± 8 % phosphatidylethanolamines \(\ast\).

This sample was treated with 0.05 N NaOH in moist chloroform-methanol (3:4, v/v) at 20° for 25 min, and the hydrolysate was fractionated by solvent partition, and by silicic acid chromatography essentially as described previously\(^3\). In addition to lysoplasmalogens a phosphatide preparation was thus obtained which contained one third of the original phosphorus and consisted of 83 ± 8 % of native plasmalogens, of about 6 % of native alkoxo phosphatides, and of 11 ± 8 % of phosphatidylethanolamines \(\ast\). Renewed alkaline treatment gave an even more satisfactory preparation of native ethanolamine plasmalogens, which was nearly free of phosphatidylethanolamines. Analytical characterization of this sample (Table 1) showed that it was, however, converted by about 8 % of alkoxo phosphatides.

Treatment of the pure native ethanolamine plasmalogens (276 \(\mu\)g P) with 0.05 N HCl in moist chloroform-methanol (1:1, v/v) at 20° for 60 min, and partitioning of the hydrolysate gave 4 % water soluble and 94 % lipid soluble phosphorus. Silicic acid chromatography of the lipid soluble fraction gave two phosphatide preparations, one of which (23 \(\mu\)g P) contained mainly acylated alkoxo glycerophosphoryl-ethanolamines, i.e., native "cephalin B"\(^9\), the other (220 \(\mu\)g P) was pure lysophosphatidylethanolamine \(\ast\). Analytical char-

\(\ast\) The quantitative estimation of the different phosphatides was based on analysis of carboxylic esters, enol ethers, phosphorus, alkali stable phosphorus, as well as acid and alkali stable phosphorus, and also on results of preparative mild acid hydrolysis.

** The purity of the lysophosphatidylethanolamines was ascertained by thin layer chromatography, and analysis of enol ethers, carboxylic esters, glycerol, phosphorus and alkali labile as well as acid stable phosphorus.
Short Communications

Table 1. Characterization of the different ethanolamine containing glycerophosphatidyls isolated from ox brain.

<table>
<thead>
<tr>
<th>Phosphatide</th>
<th>Appearance on thin layer chromatography</th>
<th>Molar ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Acyl ester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Original mixture</td>
<td>Pure spot A</td>
<td>1.32</td>
</tr>
<tr>
<td>Native plasmalogens</td>
<td>Pure spot A</td>
<td>0.99</td>
</tr>
<tr>
<td>Native "Cephalin B"</td>
<td>Pure spot A</td>
<td>1.28</td>
</tr>
<tr>
<td>Phosphatidyl ethanolamines</td>
<td>Pure spot A</td>
<td>1.78</td>
</tr>
</tbody>
</table>

a Silica Gel G; chloroform-methanol-water (65:25:4); lipid samples containing about 2 μg P were applied; staining by charring with sulphuric acid.

b Spot A symbolizes the spot obtained with synthetic L-α-(dipalmitoyl)-phosphatidylethanolamine.

c Glycerylethers were identified as described elsewhere.

d We believe that the figure obtained is too low because the "monochain derivatives" of glycerophosphorylethanolamine are partitioned in the neutral Folch-system so that about 7% of them escape into the aqueous layer. This fraction, which appears as labile phoshatide, is probably still greater in the basic Folch-system actually used.

e Preparative acid hydrolysis (see text) suggests that the figure obtained is too low.

Characterization of the native "cephalin B" (Table 1) showed that although the preparation was still contaminated by small amounts of phosphatidylethanolamine it was, nevertheless, pure enough to allow definite establishment of its acylated alkoxy structure. In 1960 Svennerholm and Thorin already reported strong, but indirect, evidence for the presence of an acylster group in the native "cephalin B" of ox brain.

Treatment of the original mixture of the ethanolamine phosphatides under the same acidic conditions as above completely destroyed the enolster groupings of the plasmalogens in this sample too, and gave 5% water soluble and 95% lipid soluble phosphorus. A sample (470 μg P) of the lipid soluble fraction yielded fairly pure phosphatidylethanolamines (170 μg P) and quite pure lysophosphatidylethanolamines (310 μg P) after chromatography on silicic acid. Analytical characterization of the phosphatidylethanolamine fraction (Table 1) showed that the sample contained 15 ± 6% native "cephalin B", but that it was free of plasmalogens.

The procedure used for the mild acid hydrolysis converted only about 1—2% of synthetic L-α-(dipalmitoyl)-phosphatidylethanolamine into lysophosphatidylethanolamine. As the lysophosphatidylethanolamines formed from the plasmalogens were isolated in very pure form, and with a high yield, it seems likely that they, as well as the alkoxy phosphatides, are also fairly stable under the conditions used. Accordingly the procedure seems suitable for the quantitative estimation of the native ethanolamine plasmalogens and also for the analysis of their fatty acids through the lysophosphatides. It thus provides a controlled micro modification of the method of Gray. Therefore it seems also evident that together with mild alkaline hydrolysis the acid treatment used will eventually provide a reliable method for the detection and quantitative estimation of the other phosphatides.

Acta Chem. Scand. 17 (1963) No. 1
I wish to thank Mrs. S. Luusvaara, Miss A. Miettinen and Mrs. M. Laakso for skilled assistance and acknowledge the support of grants from Jenny and Antti Wituri Foundation, Sigrid Jusélius Foundation, and the Finnish State Committee for Science.

5. Folch, J. J. Biol. Chem. 146 (1942) 35.

Received January 2, 1963.

Free Radicals in Some Reactions of Ninhydrin
CARL LAGERCRANTZ and MARGARETA YHLAND
Department of Medical Physics, University of Göteborg, Göteborg, Sweden

The similarity between ninhydrin and alloxan has been stressed by many authors. Both substances give rise to coloured products in reactions with amino acids. The characteristic product obtained from ninhydrin and amino acids, i.e. "Ruhemann's Purple", is considered to have a structure analogous to that of the alloxan derivative murexide. Alloxantin, a substance derived from two molecules of alloxan, has its counterpart in hydridantin formed by two molecules of ninhydrin.

By the technique of electron spin resonance (ESR) the present authors have recently shown that free radicals are formed when alloxan is reduced by thiol compounds such as glutathione or cysteine. In view of this result and the analogy between alloxan and ninhydrin, a search has been made for free radicals in the reactions of the latter substance. This note describes some experiments in which free radicals derived from ninhydrin were found.

Experimental. The radical spectra were obtained by a Varian 100 ke spectrometer. All runs were performed at ambient room temperature with the samples contained in a flat aqueous solution cell. The magnetic field was calibrated by the hyperfine splitting field (15.0 gauss) of the radicals derived from peroxysodiumdisulphonate. Standard barbiturate and phosphate buffers were used in all experiments. pH of the solutions was measured by standard technique. All reactions with ninhydrin were performed at room temperature.

Results. (i) Free radicals were obtained in buffer solutions of ninhydrin and amino acids. The radical concentration was found to be high, especially in an alkaline medium. No radicals could be detected below pH 7.

(ii) There seems to be no correlation between the radical concentration and the intensity of the purple colour developed in the reaction between ninhydrin and amino acids. No radicals could be detected in an aqueous solution of "Ruhemann’s Purple" synthesized as described by MacFadyen.

(iii) When an equimolar amount of sodium dithionite was added to a solution of ninhydrin, a high yield of free radicals was obtained. As in the reactions with amino acids, the radical content was higher in an alkaline medium than in a neutral one. No radicals could be detected in a reaction mixture of a pH value lower than 6.5.

Acta Chem. Scand. 17 (1963) No. 1