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The use of Fourier transforms for the analysis of NMR wide line
spectra generated by two broadening mechanisms is discussed. Some
examples are given of analysis performed for spectra perturbed by
quadrupole interaction and also of spectra of crystalline solids con-
taining groups of interacting nuclei.

The line-shape of NMR wide line spectra is, in many cases, determined by
two or more broadening mechanisms. The most important factors respon-
sible for the line-shape of this type of spectra are the nuclear dipole-dipole
interaction and the magnetic and electric nuclear-electronic interactions. The
dipole-dipole interaction is always of importance in non-rotating specimens?!
and must be taken into account in all cases where any other broadening
mechanism is present.

As an example of a spectral type generated by two broadening mechanisms,
the NMR spectra perturbed by quadrupole couplings in polycrystalline sam-
ples, may be studied. The following functional assignments are assumed for
the generation of the modified line-shape. Let @(&) denote the line-shape yielded
by the quadrupole coupling. The fraction of nuclei Q(£)& with a displace-
ment in the interval & to & + d¢ is assumed to be distributed over the func-
tion K(x,£) due to the dipole-dipole interaction. K is, moreover, subjected

to the condition
+00

f K(x,f)dx, =1
— 0
The absorption line may be written
3
f@) = [ K@oe(eds (1)
&
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where the function Q(£) is defined in the interval &, to &,. If the two broaden-
ing mechanisms are mutually independent, the function due to the dipole-
dipole interaction can be written as P(x—¢), and the absorption line takes
the form

&2
f@) = [ Pla—&Qe)ds ()
&

This equation is given earlier, for example by Hughes and Mac Donald 2.
In mathematical texts f(z) in eqn. (2) is called the convolution of P and Q.
The theory of the dipole-dipole interaction shows that the P-function is sym-
metric, which is utilized in the following to simplify the analysis. It should
be remembered however that individual dipole-broadened component lines
in a spectrum are not always symmetric as has been shown by Itoh et al.3 and
Silver et al.%, and in such cases the following deductions are not applicable.

With these assumptions, the nth moment of f(x) is easily calculated. In

particular
+00 +oo & & +00
My = [ f@)de= [ [Pa—8QE&dide= [ QE&{ [ Pla—&de}de
- _5;.0 o +00 5512 -
— [e®{ [ POdryde= [ Qeds
+oo{:1 o &2 +00 o
My= [ w-fa)de= [ QO [ aPa—£dz)}dé =
_E(:o +0 o - &,
— [ [ €+ PO} = [ sQeds
& -0 &
+00

as f ¢ - P(¢)dZ = 0 for even functions P({).
—00

M_and M, are thus independent of P. This well-known fact has, for exam-
ple, been used by Otsuka and Kawamura ® in a study of dislocation effects
on the iodine-resonance in some crystalline alkali iodides. All higher moments
depend on P. So is for example

& +oo s
My= [ g-Qds+ [ PO [ Qé)ds
£ 0 &

The simple analytical form of M, is due to the assumed symmetry of the
function P({). Similarly, the sine and cosine transforms of f(x) lead to very
simple analytical expressions if P(() is assumed to be even, since in this case

the integral
+00

[ PO sinwr)d

-0
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disappears, and

+00 &

f f(x) - cos(ux)dx = f fP(C -cos u(l + £)dl - Q(&)dé
-0 51
= [ PO cos(ul)dz [ Q(é) - cos(ug)ds (3)
o +oo fz
Glu) = f f@)-sinude = [ [ P()-sin u(l + £dC - Q§)dE =
~ &
+00
= [ P() - cos(ut)de f Q&) - sin(ug)d (4)
“© £

Relations of this kind are well-known from the theory of the convolution.
From eqns. (3) and (4) we have

&
J Q&) - cos(us)ds
=S : (5)
[ Q&) - sin(ué)ds
3

F(u)
G(u)

With this expression it is possible to make an assumed analytical form
of @(&) with unknown parameters to coincide with experimental data, without
ma,kmg any other assumptions than those stated above about the function

P(Z). The development can be made in a large interval of u-values.

The method can be simplified for practical use by calculating the Fourier-
transforms of the function f'(x), measured in the wide line technique.

Here is

&
= [ Pla—5 Qé)ds (6)
&

and we compute
+a0

&
Fi(u) = f f(x) - cos(ux)dr = — f P'({) - sin(ug)ds - f Q(&) - sin(u&)dE (7)
&

+0 )
f f@)-sinuade = [ P(Q)-sin(l)dz - [ Q&) - cos(u)ds  (8)
— o0 El

+co

as f P’(&)cos(ul)dl = 0 for odd functions P'({).

Th;Oiontegral
+00 +00 +®
f P/(Z) - sin(ul)dl = / P(¢) - sin(ul)—u f P(¢) - cos(ut)de =
— 0 -0 —0
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+00
= —u f P(¢) - cos(ul)de
-

as P({) goes towards zero in both limits.
Thus eqn. (3) can be substituted by

b +00 &2
S _ g P -contuaz - [ Q0 sinus 9)
and eqn. (4) by
G(u) e i
| P(c>~cos(u5)dc-§[ Q&) - cos(ué)de (10)
Finally eqn. (5) can be replaced by
&2
o [ Q&) - cos(us)ds
1% _ &
Thw T § -
[ @) - sinue)as
&

In the following eqns. (3), (4), and (5) have been used but it is assumed,
however, that F(u), G(u) and F(u)/G(u) are replaced by —G,(u)/u, F(u)lu
and —G(u)/F,(u), respectively, for reasons of convenience.

This transformation is of great practical importance in the numerical cal-
culations since the integrals F,(u) and G,(u) converge faster than F(u) and

+ 00

G(u). For small values of % the convergence is the same as for f {'(x)dz, and

—00
for large values of u the convergence is still faster due to the alternating signs
of the successive contributions in both limits.

When the constant u is large, the evaluation of the integrals becomes diffi-
cult because of the violent oscillation of the trigonometric functions. A method
for the evaluation of the integrals in this case is given by Kopal ¢ yielding
correct results and error estimates for a limited number of measured points
on the curve.

Also, if the function @(¢&) is symmetric, the eqn. (4) disappears. The use
of eqn. (5) is consequently limited to unsymmetrical functions @(&). Such
functions appear in the case of polyecrystalline samples subjected to second-
order quadrupole interaction or anisotropic Knight shift.

The displacement due to the quadrupole interaction, first- or second-
order, depends on the orientation of the external magnetic field in relation
to the principal axes of the electric field gradient tensor. The condition of
mutual independence of the distributions P({) and @(&) will thus in this case
require that the function P(¢) describing the dipolar broadening is independent
of the orientation of the external magnetic field in the crystal lattice. This
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requirement of isotropy of P({) is indispensable for a detailed analysis of all
spectra of polycrystalline samples, and it seems hardly possible ever to resolve
spectra of this kind, unless this condition is fulfilled.

The aforementioned investigation by Otsuka and Kawamura provides an
example of a single crystal giving rise to an unsymmetric function Q(¢) of
interest for the future study of this problem and the applicability of eqn. (5).

Many examples of symmetric functions (&) exist. Valuable information

&2
can in this case be obtained from eqn. (3) if the integral f Q&) - cos(ué&)dE has
&1

+o0
zeros that can be distinguished from the zeros of f P(Z)-cos(ul)dg.
-0
Assuming P(f) to be Gaussian, P(l) = e 9, the cosine transform is
+00

f P(¢)-cos(ul)de = VZ -e~#/4a A narrow function P({) thus has a broad
— Q0

transform and vice versa.

The experimental P({) curves of pure dipole-broadened functions give
transforms which, for small u, coincide rather well with the Gaussian and
go towards zero as u goes towards infinity. For large u, however, the trans-
forms usually have a sequence of zeros, and the narrower the dipole-broadened
function the higher the u-values for the zeros.

When P({) is narrow enough in comparison with the Q(&)-function, the
zeros in the transform of Q(£) will occur for smaller u-values than the zeros
in the transform of P({). In this case, the zeros are easily distinguished.

Polycrystalline samples perturbed by first-order quadrupole interaction,
in all cases lead to symmetric functions Q(&).

Spectra of polycrystalline solids where the nuclei occur in groups give spectra
of rather similar form. The spectra of hydrated crystals provide an example.

The two protons in the water molecule here constitute a pair of nuclear
magnets, which are nearest neighbours. The dipole-dipole interaction formally
can be divided into two parts one from the interaction between the protons
in the water molecule giving a shape function @(&), and one from the interac-
tion with the other neighbours giving a dipole-broadened function P({).

Q(¢&) for a diamagnetic polycrystalline hydrate is, for example given by

Andrew 7 as
Q(f) = Ql(f) + Qz(f)

1 1
= for —-b 2b 12
Q4($) w5 ViTEh or (&< (12)
Qx(8) = ! L for —2 CECD

where b = (3/2) X (u/r®) is the proton moment and r is the distance between
the nuclei.

Acta Chem. Scand. 16 (1962) No. 9



NMR WIDE LINE SHAPES 2217

Here is

1 .j«bcosu.fdé 1 ) bﬁosuédé
4V'3b I VI (b)) V3Bb I, VI—(&b)

With the substitution Z = v/ (2ubjm)[1 + (£/b)] in the first integral and
the substitution Z = v/ (2ubjm)[1—(&/b)] in the second integral eqn. (13) is
transformed to

+00 vV 6ubjzt

f Q(&)cos u&dé =V m/6ub - cos(ub) f cong2dZ +
— 00 o

+00
[ Q®) cos uds = (13)

Veudlm
+ 4 7/6ub sin (ub) f sing 727 (14)

The zeros of the transform of @(&) is shown in Fig. 1. For the calculation of
the transform the values of the Fresnel integrals
 WVewn . Vewam
OV 6ubjzm) = f cos gzzdz and S(V 6ub/n) = f sin g 7247

have been taken from a table given by van Wijngaarden and Scheen 8.

The first three zeros occur for u.b = 2.16, usb = 5.63 and u,b = 8.53 from
which b and r can be determined. From the values of the quotients u,/u, and
ug/u, it can be tested whether the conditions necessary for a good adaptation
are fulfilled.

Spectra composed by separate lines can also be evaluated by means of
Fourier transforms.

An absorption line composed by n lines can be written as

fx) = iva(x—sy) (15)

Y=

cos (ub)~C('%“w-) +sin(ub) S (’—6—-—-‘”‘”’) )

06 -
= 3, 4 5 /6, 7 ub 8\ 9

2L | so’ 180 T 270 360 T 450° Yo
-06 |
-10

V 6ubln / 6ublm
Fig. 1. The function cos(ub) f cos fg,Z?dZ + sin(ub)-f sin _g Z*dZ.
9

[}
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The function P, is the dipole-function of line number », which is sym-
metric with its symmetry point for x = ¢&,.
A spectrum composed by two separate lines can be studied as a simple

example.
J@) = Py(x—&;) + Pole—&,) (16)

When the lines overlap, it is of importance to determine the value of the
displacement (£,—&,) and the line-shapes for the two components.
In this case &, and &, are unknown, and it is convenient to calculate the
transforms F(u,a) and G(u,a) for an arbitrary origin.
+00

u,a) = j f(x)-cos u(x—a)dxr = S,(u)-cos u(&;—a) + Sy(u).cos u(é,—a)
(17)

G(u,a) = f f(x)sin w(x—a)dx = S, (u)-sin u(&;—a) + Sy(u)-sin u(é,—a)

(18)
Where
u) = foo Py(Z) - cos ul dZ, Sy(u +fOOP2 () - cos ul di.
T a =) - (& + &) we get
Flua) = (8u) + Syu)} - cos% wlg— &) (19)
G(u,2) = {8,()— Sy(w)} - sin o - u(£y— &) (20)

The zeros of F(u,a) and G(u,a) are studied as functions of » for different
a-values. By means of iterational calculations that a-value is determined for

which the zeros of cos - u(&,—§&,;) and sin }) u(&,— &) can be identified

among the zeros of F(u,a) and G(u,a), respectively.
The displacement (£,—&;) is determined from the u-values for the zeros
of these two series. S,(u) and S,(u) are then easily obtained from eqns. (19)
and (20).
In application, the transforms have only to be calculated for a value of a,
for instance a = 0, since
F(u,a) = F(u,0) - cos(ua) + G(u,0) - sin(ua)
G(u,a) = G(u,0) - cos(ua) — F(u,0) - sin(ua)

A few spectra of this kind have been evaluated. Spectra with a known
value of the chemical shift (¢,— &,) have been gained through numerical addi-
tion of single spectral lines. The 'H-resonance of water solutions of MnSO,
have been used. The results show that the method is applicable when (£,— &)
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is in the interval 0.5 m to 3.0 m, where m is the linewidth parameter (for
the definition of m, cf. Ref.?). In this interval (£,—&,) has been determined
with an error ranging from 4 6 9% to -+ 2 9, for spectra with good
signal/noise-ratio. When (&,— &,) is smaller than 0.5 m, the series of zeros in
the trigonometric functions cannot be distinguished from those in
{S(uw) + Sy(u)} and {S;(u)—Sy(u)}. When (&—¢&,) is larger than 3.0 m, the
displacement can be determined directly from the spectrum.

The 'H-resonance of hydrated crystals constitutes a special case of the
above mentioned spectral type. A single crystal, where the water molecule
has one crystallographic orientation, gives a symmetric spectrum

f(x) = P(x—¢&) + P(x + &) (21)

3
where &= o M r3.(3 cos?@—1)

u is the proton moment. r is the distance between the nuclei and @ is the
angle between the magnetic field and the proton-proton vector.

The line-width is rather large compared to the maximum separation between
the lines 3 u 2. Therefore, in a large interval, £ cannot be directly determined
from the spectrum.

With the origin in the symmetry-point of the spectrum we get

+00

F(u) = 2 - S(u) - cos(ué), where S(u) = f P(C) - cos(ut)de
— Q0
assuming P to be symmetric.
A series of zeros in F(u) thus occur for u - & = Z +nn n=20,1,2,...,from

which & can be determined. The symmetry properties of P may be ascertained
from the values of the quotients of the zeros.

Spectra from single crystals affected by first-order quadrupole interaction
are also composed by separate lines. For spin I such a spectrum can be written

f@) = 3 Pua—n-8) (22)

where k = I — 1 and & = vgf,; ¢f. Cohen and Reif 0.

5
&

The position of the resonance of the unaffected signal can, in these cases,
be determined experimentally, and the transforms can be computed with
this point as the origin.

For I =1 is
fe) = Pue— 5) + Pyl + 5 ) and

e

F(u) = {Sy(u) + S_y(u)} - cos(u )

[

G(u) = {Sy,(u)—S_,(u)} - sin(u g )
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and & can be determined from the zeros of F(u) and G(u). If P_.,, and P,
are identcial, the spectrum will be symmetric and can be treated in the same
way as the spectrum of single hydrated crystals, described above.

ForI:—Z— is

fx) = Py(@—§&) + Py(x) + P_,(x + §)
F(u) = (8,(u) + S_(u)} - cos(ué) + Sylu)
G(u) = {S;(u)—S_,(u)} . sin(u§)

and £ can here be determined from the zeros of G(u). If the line-shapes of the
three lines are identical, the spectrum will be symmetric. The relative inten-
sities of the lines are determined by the quadrupole interaction and in this
case is
4
So(u) = 10" {Sy(u) + Sy(w) + S_y(u)}
3
Sy(u) = S_y(w) = 75+ 182(w) + So(u) -+ S-4(u)}

Thus F(u) = { 6 - cos(u&) + ~140—} {8y (u) + Sy(u) + S_;(u)}

10
and £ can be determined from the series of zeros in cos(uf) = — g occurring
in F(u).
For I > ; a similar method may be used if the line-shapes of the different

lines are identical.

It seems probable that the evaluation of many spectra can be facilitated
by the use of Fourier transforms. No attempt, however, has been made to go
into the mathematical side of the problem. The cases, as described above,
only serve to examplify some simple practical applications of the method.
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