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High-speed Computers as a Supplement to Graphical Methods

I. Functional Behavior of the Error Square Sum

LARS GUNNAR SILLEN

Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm 70, Sweden

The paper discusses the principles underlying "LETAGROP”,
a computer program being used for calculating, from experimental
data (y;, @y, @g..), (¢ =1..n), a set of unknown constants
k,(r =1..N), assuming a functional relationship y = f(k,, a,,
a,...). The best” values k,” searched for, are those that minimize
the error square sum U (eqn. 7). The method may be described as &
generalized least-squares method, valid also for non-linear and im-
plicit functions, which are hard to treat by the standard treatment for
linear functions or by the Gauss’ approximation method.

The functional behavior of U (k, ... kn) is discussed for the general
linear case, and for N = 1 and N = 2. The “standard deviations”
D, are interpreted geometrically by means of the extreme values
k,” & D, of each k, on the *’D boundary”’,defined by U — U, = 02 (47).

A high-speed computer can very easily “map” U (k, ... kn),
even for non-linear and implicit functions. As an approximation it is
assumed that U is a second-degree function of the k, ; then § (IV 4 1)
(N -+ 2) points suffice to calculate the position of the minimum and
the D boundary. Starting from a first, approximate set k,’, the
"best”’ values k,” are reached by (usually only two or a few) successive
approximations. The need for choosing the k, as independent as
possible is pointed out.

The limitations of the whole ’least squares’ approach are discussed.
At present there seems to be still more need for better chemical work
than for better statistical treatment.

The following papers will deal with a number of computer programs that
have proved very helpful in our present work on complicated equilibria.
One of these programs, called "LETAGROP”’ was designed to adjust a number
of equilibrium constants simultaneously, once the formulas of the complexes
and the approximate values of the equilibrium constants had been found by
means of graphical methods. It can also be applied to other types of problems
where several unknown parameters are to be determined.

As distinguished from the usual “least squares” method, "LETAGROP”
(’pit-mapping’’) can be applied also to cases where the measured quantity
cannot be expressed as a linear or even as an explicit function of the unknown
Pparameters.
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160 LARS GUNNAR SILLEN

Since this way of treatment has not been described in any source that the
author is aware of, and at any rate may prove useful for many chemical prob-
lems, it seems appropriate to describe its principles in brief.

GENERAL PROBLEM

We have n measurements y; of the variable quantity y and assume that
we know the functional relationship.

Y= f(kl, kz...k, kN s Oy, az--') (1)

Here, a, a,, efc. are quantities that can be varied but whose values (@45
ay;, €etc.) are assumed to be known accurately in each experiment. From the
n sets of data (y,, a,,, @,;...), ¢ = 1, 2 ...n, we want to determine the set of N
unknown constants k,, r = 1, 2...N.

Example I a. Mononuclear complexes A,B, data (4, B, a, b). We have a
series of 7 solutions in each of which one knows the total concentrations 4 and
B, and the concentrations a and b of free A (ligand) and free B (central group).
In the expression

y=Bjb=1+pa+ fa + po® +...= 1 + Efab (2)

one wants to determine the unknown stability constants g ... By from a number
of experimental sets (y, a).

Ezample I b. Mononuclear complexes A,B, data (4, B, a). From the data
we may calculate the ligand number Z (or #) = (4 — a)/B. For calculating
By ... Bv we may use the relationship

Zpppa?

2= 2P

®3)

One may rearrange (3) to give, for instance,
Yy=2Z+XZ — p)p* =0 (4)

Because of experimental errors, the value found is usually'not exactly zero.
Other rearrangements can also be made. Again, we want to determine the N
unkown f, from = sets (Z, a).

Example II. Polynuclear complexes A,B,, data (B, 4, a). If there are
several polynuclear complexes in a system, the mass balance and the law of
mass action give

B =b 4 ZZqBatht (5a)

BZ = A — a = XXZpB,art? (5b)

The unknown constants f,, should be determined from n sets (B, Z, a).
Nature in general does not seem anxious to provide such sets of (p, ¢q) as would
make it easy to eliminate b from (5a) and (5b). So, in general, no explicit
expression for Z can be derived.

Example 111. Hydrolysis studies in self-medium. We have the equations
(Hietanen and Sillén 1):
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COMPUTERS AND GRAPHICAL METHODS I 161

B =b + ZZqPyh?be (6a)
BZ =h — H — 4 = ZXppi?h? (6b)
E =E,— 59.154 log h + jh (6¢c)

Here, H is the total (analytical) proton excess, E is the measured emf,
E, and j are constants, which cannot be determined independently, and 4
is the correction for a possible analytical error in H. The experimental data
are (E, H), the unknown constants are the B, E,, j, and 4, whereas b and A
should be eliminated. Even here, it is in general not possible to give an explicit
expression H(H).

Of these examples, Ia is easily accessible to the standard least squares”
treatment Refs.2%, which can also be applied to I b after some transformation.
For finding and refining the constants in examples II and III (and even in I)
successive approximations have usually been used.

Error square sum

It is customary to search for that set of constants &,”: k," ... ky”, that will
minimize the error-square sum U

U= ‘Zw‘.[y,- — f(ky .o by 5 ag, Gy, )P (7

where w; is the “weight’’ assigned to each measurement y;. The mathematical
condition for our criterion

U = minimum (8)
is a set of N ”normal equations”
(@U|)ok,) = 0,r =1...N (8a)

Whether the person using (8) realizes this or not it is a strictly valid crite-
rion for “maximum likelihood” only under the following conditions:

(@) The functional relationship (1) is correct; for instance, no important
terms have been left out.

(b) There are no other errors to be considered than the random experi-
mental error in y. Especially, there are no systematic errors.

(¢) The random errors in y follow a “normal” (Gaussian) distribution.

(d) The weight

w; (Y;, Qyg Qg ..2) (9)

assigned to each measurement is an exact measure of its inherent accuracy
as defined by (28).

These conditions call for some comments:

(@) The choice of (1) is a matter of judgment. Sometimes, several functions
fr, fu etc. are compared, and one is in general inclined to prefer the function
that gives the lowest value for U,;,. The judgment comes in especially when
one considers the functions that were never tried. With the standard least
squares’’ treatment one is restricted to functions linear in the k,.

(b) It is usually not difficult to choose the variable y, that should “carry”
the experimental error. In the examples above one would probably use Z in
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I'and IT and H or E in IIL. If there are random errors also in a, etc. these can
usually be accounted for by a corresponding increase in the random error in y.
However, if there is a range where the random variation in, say, a would
correspond to a variation in y, much greater than any experimental errors,
then misleading results will be obtained; this is illustrated in Ref3, p. 2031,
where the authors bave started from eqn. (4) but put the error on the ligand
concentration instead of on the ligand number. Thus, some caution is needed.

The most important condition, which is, alas, frequently not fulfilled, is
the absence of systematic errors. An especially insidious combination is that
of systematic errors and an erroneous function (1) which may sometimes give
an agreement between experiment and erroneous theory that seems quite
convineing. A wrong conclusion can of course be reached also without the aid
of a computer, or statistics.

There is evidently no statistical way of avoiding this risk. One must keep
an open mind for the possibilities of systematic errors, apply as many inde-
pendent experimental approaches as possible, and always strive to prove
oneself wrong.

(¢) There may be shades of opinion among statisticians as to whether a
“normal” distribution is a frequent phenomenon or not in this harsh world of
reality. At any rate, if the errors in a quantity  are normally” distributed,
then the errors are not ’normally’’ distributed in non-linear functions of x
like log @, =1, or «2.

If, as is usually the case, nothing is known about the real error distribution,
out of all guesses that can be made, the "normal’” distribution is the one that
gives the simplest calculations.

(d) is the second point where judgment (or lack of it) creeps into all cal-
culations founded on (7) and (8).

It is certainly seldom that one can hope that all these assumptions (@) — (d)
are correct. Nevertheless, the “least squares’ criterion (8) is often employed
because of its simplicity, and this will be done in the present paper also.

The set of constants, &,” (» = 1 ... N) that fulfil (8) we shall call the ’best’’
set of constants. It is ’objective’ in the sense that with the same set of data,
the same theoretical function (1), and the same weight function (9), the con-
dition (8) should give the same best’’ set of constants in the hands of different
workers. This is an example of how some quantities that are defined exactly
(under given conditions) in mathematical statistics, have acquired highly
suggestive names, which may lead non-statisticians to over-estimate their
significance in the world of reality: ’normal’ distribution, ’maximum likeli-
hood”, probable” error, “’significant’ result, ’standard’ deviation, "best”
values.

Remembering the limitations of the whole approach, we shall not forget
the quotation marks around ’best”’. Some other authors leave them out.

The standard ”"least squares” treatment

T If fin (1) is a linear function of the various k,, say f = Zk,a,, then (8a)
leads to a system of linear equations which can be solved by elimination methods
or, for not too large N values, by means of determinants.
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Most of the larger high-speed computers have standard “’least squares”
programs that can be adapted to this type of problem. Of the examples I—IIT
given above, only I a and (with some transformation and difficulty) I b can
be treated in this way. The “least squares’ treatment has been applied to
equilibria of complex formation by several authors, especially by Sullivan,
Rydberg and Miller 3-8, Earlier work in this direction has been summarized
by Rydberg $. _

If fin (1) is not a linear function, the general trend has been to reduce it
to a linear one, either by transformation (as was done in example I b), or by
Gauss’ approximation method, in which one starts with an approximative
set k,’, expresses the derivatives of U (8a) around k,” by means of Taylor
series for f and uses only the first terms. Programming a computer for Gauss’
method is not always simple, and according to Moore and Ziegler 8 its per-
formance is somewhat unpredictable. It seems hard to apply Gauss’ method
to cases such as II and IIT above, where no explicit relationship (1) can be
given.

"Pit-mapping”

However, one can make oneself free from the condition that (1) should be
linear, or even explicit, if one considers directly the functional behavior of the
error-square sum

Ulky ... ky) (10)

as a function of the various k,. By means of a high-speed computer one may
rapidly calculate U for various sets of &, and it is natural to ask whether one
could not use a selected set of points of the function (10) for finding the lowest
point:

Upin = Uy = Ulky", ky' ... ky") (11)

If f is linear, (10) is a second-degree surface, as will be seen below. (Eqn.
40, cf. eqn. 39). With N = 1 it is a parabola, with N = 2 an elliptic paraboloid,
and for higher NV a generalized elliptic paraboloid in (¥ + 1)-dimensional space.
For any value of N we shall refer to the lowest point U, and its immediate
surroundings as the *’pit”’. The procedure to be proposed, which was indicated
in a short note by Dyrssen, Ingri and Sillén °, we shall call “’pit-mapping”’
since in a way it describes the shape of the pit. We shall see how this map can
be used also for estimating the statistical “’standard deviation” which may
be obtained, for the linear case, as a by-product of the standard computer
programs.

LINEAR EQUATIONS

As a starting point we shall study the behavior of U in the linear case.
The symbolism will, to a large extent, be the same as is used by Cramér 7.
For a stochastic varable , say , with the distribution function F(x) (proba-
bility that it in a particular case is < z), the average will be written
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% — Bz} — f % dF () (12)
—o0
and the standard deviation
D{z} =0, (13)
will be defined by
DYz} = E{(z — %) (14)

(Some other textbooks use D for what is here called D?). These definitions do
not presume any special form of F(x).

We shall carry out the mathematical discussion only insofar as this is
necessary to explain our method. We shall set down for future use a result,
which is easily seen from the usual treatment, although usually not written
this way: the minimum value U, is a stochastic variable, for which

EWU, =o0%(n— N) (15)
D¥U,) = 2¢* (n — N) (16)

Ugo~2 follows a y2-distribution with (n — N) degrees of freedom. Here, o
is the “standard deviation” for y; in a point with the weight w; = 1. In the
following, we shall take the "’best’’ experimental value of ¢ from

Uy =d%n — N) (17)
f linear, N =1

If N = 1 there is only one constant, k;, to be determined. If (1) is linear,
we can always transform it to read

(y=)f=Fk

We have n» measurements, %; (1 = 1, 2 ... n), to each of which we ascribe
a weight w, (¢ = 1, 2...n). The error square sum is

U= Zw(y;, — k,)* = Z(wy? — 2 wyk, + wk,? (19)
We introduce the weight sum W, and the weighted average ¥, defined by
W=2w,; yW= Zuwy, (20)
Inserting (20) into (19) gives

U= Zwy2— 2k, y W+ k2W (21)

By differentiation with respect to k, we find the condition for a mini-
mum in U:

0UJoky, = 2W(k, —y) =0 (22)
At the minimum point we have, from (22) and (21)

k'"=y (23)

Up= Zwy? — W k," (24)
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According to (23) the ’best” value is the weighted average. We shall study
the behavior of U(k,) around this point, for simplicity replacing k, by its
deviation d, from the “best” value:

ky=1Fk"+4+4d, (25)
Inserting (24) and (25) into (21) gives
U=U,+ Wd2 (26)

Hence, the "pit”’ U(d,) is a parabola. The squared standard deviation of
k," will be, using (23) and (20):

D? = D*k,"} = D*{ Zwy,|W} = Z(w,[W)*D¥y,} (27)
Up to now, we have made no assumption about the error distribution or

weights. Let us assume, however, that we have managed to choose, for each
¥;, its weight so that

Dy} = o®|w; ; o = constant (28)
Inserting (28) into (27) we find
D? = ¢* Zw,|W? = o*|W (29)

If we may assume that we have a normal” distribution, we can apply
(17) Uy = o*(n — N).

One may ask what value U has for d, = D, = D{k,"}. Inserting this value
into (26) and applying (29) we find

U(Dy) = U, + o* (30)

\_olks]/
T

ky

"

ky

Fig. 1. Direct method for calculating the best” value k,” and its standard deviation™

D, provided the functional relationship between the error square sum U and k, is known.

The ’best’ value, k,”, is the one that gives the minimum value, U,, for U. The points
where U — U, = U,/(n — N) are k," + D,.
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or using (17)

U— U, = 7£—3V for d, — D{k,"} (30a)

Thus, if the shape of the pit” is known, (30a) gives a direct method for
finding the “best” value for D{k,"} (Fig. 1).

General linear case

Let us assume that the theoretical function has the'general linear form
Y; = f; = Zka- (31)

14
and that we have n measurements y; (¢ = 1, 2 ... n), each of weight w;,, to de-
termine the N unknown constants &, (r = 1, 2... N) searched for. In the follow-
ing, 7, s and ¢ will be used indiscriminately for the index of k, and sums over

them imply “from 1 to N”’; sums over ¢ are ”’ from 1 to »”.
The error square sum is then

U= Zw(y;, — Zka,)? = Zwy? — 2 ZZwyka, + LZZwkka,a; (32)

We replace the sums over ¢ by the sets of quantities b,, and ¢, defined by
Wb, = Zwa,a, (33)

We, = Zwya,, (34)
As before, W = Zw;,. (eqn. 20) Then, (32) takes the form
U= “'Z'w,.y,.2 — 2W Xk, + W ZXk,kb,, (35)

Differentiation with respect to the k, gives a set of conditions (the normal
equations, 8a) for U to have a minimum:

kb, = ¢, (36)

The solution of (36) is

k" = B1Xc.B,, (37)
were B is the determinant of the symmetrical matrix || b, || and By, is the sub-

determinant corresponding to b,,. Combining (35) and (36) we find at the mini-
mum point

Uy= Zwy? — WZk'c, (38)
¢ r
We replace &, by the difference d, from the “best” value
k,=k" +d, (39)
After some arithmetic, (35) can be transformed, using (39), (38), and (36):
U—Uy= W 2xddpb, (40)
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So, U — U, is a homogeneous function of second degree in the d,.
The standard deviations of the best’” values k,” are deduced as follows.
Using (37) and (34) we have,

D2 = D¥k,"} = D¥B'W! 'Z Zwa By} = B W"2§w42( ZayB, P Dy}
AN ] .
If we assume that the weights have been chosen so that (28) holds, we
find, using (33)
D2 = o®B2W—2 X X Jw,a,0,B, B, = ¢*B*W~ X Xb,B, B,
t s ¢

s

It follows from the properties of determinants that the double sum equals
BB,, so that

D2 = D¥k,"y = 6*B,|BW (41)

Calculation of k" and D, from a map of U

Suppose that we start from a set of approximate constants k,’...ky"
and that we have calculated values of U for a sufficient number of sets in
the neighborhood, to determine the coefficients in

U=cy+ 2 Zegx, + ZZc, 2, | (42)
7 r s

z, =k — k' (42a)

The minimum point is then found from the equation system (differentiating
U):

Exs”crs + ¢ = 0,(r=12.. N) (43)

which gives the best values”
z," = — 2o C, ,CL 5 k)" = k' 4 x,” (43a)
s
Here, O is the determinant of the matrix || ¢, ||, and C,, the subdeterminant

of ¢,.
Inserting (43) into (42) gives

Up= Upin = ¢ + 2 Zcg,” — Zcot,” = co + Zeoa,” (44)

We may compare (35) or (40) and (42). Since the second-degree terms must
be independent of parallel shifts of the coordinates, we have

Cps = bW ; C,, = B,,WN-1, C = BWN (45)

We may derive an expression for the standard deviations, starting from
(41), taking 0% = Uy/(n — N) from (17), and inserting (45):

D2 = Dk,"} = U,C,/C(n — N) (46)

The procedure would then be as follows. In order to find the constants

coy Cor and ¢, in (42), one determines at least as many, thus 1 + N 4
+ N (N +1)=3{ 4+ 1) (N + 2) values for U: 3 values for N = 1, 6 values
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for N = 2, 10 for N = 3, etc. From these one calculates the constants in (42),

then the “’best’ values k" from (43a), U, from (44), the “’standard deviation”

in y, o, from (17) and the “’standard deviations” of the &," from (46). For both

(43a) and (46) one should calculate the reciprocal matrix of c,, with elements
1

rs

Geometrical interpretation; the D boundary

We may imagine the function U(k, ... ky) as an N-dimensional surface
in (V¥ + 1)-dimensional space. We shall introduce, as a generalization of the
result (30), the D boundary, characterized by

U=U,+ o (47)
From (47) and (40), on the D boundary
ZZd,d,b,, =o}W (48)

If N = 2, the U surface (the pit) is an elliptic paraboloid and the .D boun-
dary an elhpse if N = 3, the D boundary is an ellipsoid etc, in general, the
U surface is a generalized elh'ptic paraboloid and the D boundary a generalized
ellipsoid,

Now we propose that for each k%, the standard deviation D, is equal to
the maximum value that d, can attain on the D boundary. Differentiating
(48) gives

zdd, Zd,b,, = 0

For d, to be extreme we must then bave

Zdbs =0,t+r; Zdb, =c + 0 (49)
s [
where ¢ is a constant to be eliminated. The solution of (49) is
(@)mag = ¢ ByB1;d, = ¢ BB = (d,)nasBre B (49a)
Inserting into (48) first (49), then (49a), we find
o*W = (dr)maxfd brs = (d, )maxE B,b, By = (d)uaxBB,™ (50)
Comparison of (50) and (41) confirms our proposition:
(¢)max = D» = D{k,"} (61)
Example, N = 2. Let us, for illustration, assume that we measure
y=f=1k +ka (52)

Hence in (31), a;; = 1, ay; = a, and, from (33) and (34)
Wby, = Zw, = W ; Wb12 = Zwa — Wa etc., or in brief
bj,=1; bm—a b,z_aa c,=Y;ca=ay;B=da—a?;

The bar stands for average: aa is the average of a?, efc. From (37) we find:
k"= (yaa —aya) B ; k) = (ay —ay) B (63)
Acta Chem. Scand. 16 (1962) No. 1
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The D boundary (48) is an ellipse:

d? + 2a dd, + aa d2 = ®/W (54)
The “standard deviations” (41) of the “’best’’ values are:
D,=0Vaa|VBW;D,=0|VBW (55)
By a shift of origin we may replace k, by k,*, and a by a*, defined by
k*=Fk 4+ ka;a*=a—a;y=Fk*+ ka* (52a)

We then find

bi* =1Lbp*=0;by*=a0 —a@®=B*=B;c;*=y;c*=ay —ay;
k* =Fk,"+ k)@ (53a)
The D boundary (48) is now another ellipse:
d,*? + Bd? = o*|W (54a)
a |y b
]
oy
b;
arctg k, \
ky N K
| a
a
c d
— d
20‘,*
C)
K %2
dy
a*
-0
a=a

Fig. 2. (Schematic) a) experimental points y(a) and “’best’ line, ¥y = k; + kya. b) D

boundary”, in this case & skew ellipse. ¢) = Fig. 2 a, with origin shifted to the average

value @. d) D boundary corresponding to 2 c: now the axes of the ellipse coincide with
the coordinate axes. Explanations, see text.
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The standard deviations (41) are
D*=0¢|VW;Dy=0|VBW (55a)

The schematic Figs. 2a and 2c¢ indicate the experimental points and “’best”’
line, with the two different choices of origin; Figs. 2b and 2d give the corre-
sponding D boundaries, which indicate the shape of the pit”’. The scale of
d, and d,* is magnified in comparison with k; and k,*. The scale for d, is
arbitrary.

For a given set of points, the "’best’ line is independent of the transforma-
tion (52a), and so is the standard deviation D, of the slope. However, the
standard deviation of the constant k, is larger than the value D,* obtained
if the origin is taken at the average @.

In Figs. 2a—2b the pit is skew: if k, is fixed at another value than the
“best”’, say at a higher value, then the minimum for U is obtained at a slope
k, which is smaller than the “best’’ one. In Figs. 2¢c—2d, however, the two
unknown constants are independent: the same value for the slope k, is obtained
whatever value is assumed for & *.

The general non-linear case

Now let us assume that we have a non-linear relationship — perhaps not
even explicit — between y = fin (1) and the various k,. Such a case is hard
to attack by the standard straight-forward “’least squares’ method. We shall,
however, still adopt as a criterion for the "best” values %, that they should
give a minimum in U (8a).

By means of a high-speed computer it is relatively easy to calculate U for
a number of sets of the k,. In principle one might start with some approximate
sot of k, — calculated, estimated or guessed — by trial and error find one’s
way to regions with lower and lower U values, and finally come as close as
desired to the minimum point U, With one unknown (& = 1) this is easy
enough, but some experience has shown us that even with N = 2 this may be
a lengthy procedure, especially if the “pit” is skew (cf. Fig. 2b). A more
systematic method of search is therefore needed.

The equation of the ”pit” (10) in the general case may be very compli-
cated. However, we may use Taylor’s series to develop U as a power ceries
of the coordinates d, measured from the minimum point %,". The constant
term is then U, and all terms of first degree in the d, are zero, since U, is a
minimum value. So, near the bottom of the pit we would have

U—Uy= ZZcdd, (+ 22X, ddd, + ...) (56)
7 s r s ¢

Infthe computer program “LETAGROP” to be described in a following
paper (Ingri and Sillén 19) all terms of higher degree than second are neglected
in (566). This approximation should be better, the closer one is to the bottom
of the pit.

Starting from an approximate set k,” of the unknown constants, one cal-
culates, by a systematic approach, the appropriate number of U values,
3 (N 4+ 1) (N + 2), and from them the constants in (42). Using the procedure
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for the linear case, one then calculates with (43a) the parameters k,” of the
minimum point.

If f is linear, one would get the correct coordinates of the minimum point,
however bad the guessed k,’. In the general case, because of the presence of
terms of higher degree, the minimum point must be found by a series of suc-
cessive approximations. In our experience hitherto with "LETAGROP” it
seems that the procedure is reasonably rapidly convergent: 2—3 approxima-
tions suffice, dependent on how good the original guess is. However, there is
certainly still much to be learnt about the complications that may arise in
special cases.

Again, we shall define the D boundary by the equation

U—U,=o® (47)

As a measure of the standard deviations of the various k,” we shall use
the maximum values D, of the various d, on the D boundary.

Once one knows the ¢, and hence the approximate shape of the pit, D,
can be calculated using (46). The influence of the terms of higher degree in
(56) is minimized, and hence the approximation of D, and k,” is better, if in
the final approximation step the estimate k,” is close to the minimum point,
and the other points used are close to the D boundary.

A few additional points may be made in connection with Fig. 2. It is advis-
able to choose the constants to be determined, in such a way that their influence
on the data is independent, thus so that the pit” is as little skew as possible.
For instance, if B/b is studied with mononuclear complexes (Example Ia),
B ... By may be the best choice, whereas for data Z(a), the step-wise constants
K,, K,... Ky are more independent: there are often ranges, where the Z value
is only influenced by one or two of the K, values.

A systematic error may often be thought of as an additional unknown
constant (for instance an analytical error, Example IIT) which one should
have included in the calculations, and which gives a skew pit (see Fig. 2b);
if it did not, it would do little harm.

The expressions for the standard deviations D{k,"} in (41) contain the stan-
dard deviation in the y measurements, o, and in addition only factors that
depend on the arrangement of the experiments (the various a;, see eqn. 33).
It might thus be said (provided the general assumptions (a) — (d), page 161
are valid) that the standard deviation of each constant is determined as
soon as the series of experiments has been designed. If the standard deviation
for a specific constant is found to be relatively large, this may be because the
constant is relatively small, or because the experiments were not particularly
well designed for determining this constant.

Methods founded on the principle described may be used, as will be shown
in subsequent papers, for a fairly rapid refining of the unknown constants
in a number of problems, which have been inaccessible to the standard “least
squares’’ treatment, and may thus save much time. However, ultimately
they depend on graphical methods: especially the choice of the function f,
and the choice of the first set of constants is preferably made by graphical
methods, and the last step will be a graph, to check for systematic deviations.
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In a development of the program one might check that the distribution

of the deviations (y; — f;) is “normal” or at least symmetrical, for instance
by studying the various moments Zw,(y; — f,)”, m =1, 3, 4... and the
relation to the sum with m = 2 (which is U,). One might even apply a chi-
square test. It may be noted in passing that what Rydberg and Sullivan 4
denote as a x2 test (chi-square test) is not what is usually meant by the ex-
pression (Ref. 7, chapter 30) but rather a test that the ¢? calculated from U,
using (17) agrees reasonably well with the estimated experimental inaccuracy
of 4.
It would be deplorable if the use of LETAGROP or other, less powerful
computer methods should lead to an over-estimate of the significance of "’best”’
values. The main purpose of computer methods is to save time, for with good
data the differences in results obtained by graphical and computer refining
should not be large enough to be interesting. Most of the errors in chemical
literature, unfortunately, would not be reduced by statistical treatment.
Sometimes what is wanted is some theoretical understanding, or some imagi-
nation concerning the various possible reactions that may take place in a solu-
tion. Often, results can be improved, not by mathematical analysis but only
bu purifying the reagents, repeating the experiments, varying the factors
that may influence the results (range of concentrations etc.), and checking
with independent experimental methods.

Acknowledgements. Thanks are due to many of my coworkers, and especially to Dr.
Nils Ingri, for valuable discussions and never-failing willingness to help me in the practical
computer work. After the manuscript was written, Dr. Germund Dahlqgvist, Dr. Howard
d. Evans Jr, Professor Ulf Grenander and Dr. Arne Hékansson have given helpful com-
ments. Professor Harald Cramér was kind enough to read the manuscript.

This work is part of a program supported by Statens Naturvetenskapliga Forsknings-
rdd (Swedish Natural Science Research Council) and Statens Rdad for Atomforskning
(Swedish Atomic Energy Research Council ) and also by the Office of Scientific Research
of the Office of Aerospace Research, USAF through its European office.

REFERENCES

. Hietanen, 8. and Sillén, L. G. Acta Chem. Scand. 13 (1959) 533.

. McMasters, D. L. and Schaap, W. B. Proc. Indiana Acad. Sci. 67 (1958) 111.

. Sullivan, J. C., Rydberg, J. and Miller, W. F. Acta Chem. Scand. 13 (1959) 2023,
Rydberg, J. and Sullivan, J. C. Acta Chem. Scand. 13 (1959) 186, 2057.

Rydberg, J. Acta Chem. Scand. 14 (1960) 157.

Rydberg, J. Acta Chem. Scand. 15 (1961) 1723,

Cramér, H. Mathematical methods of statistics, Uppsala 1945.

Moore, R. H. and Ziegler, R. K. Los Alamos Report LA-2367, 1960.

. Dyrssen, D., Ingri, N. and Sillén, L. G. Acta Chem. Scand. 15 (1961) 694.

. Ingri, N. and Sillén, L. G. Acta Chem. Scand. 16 (1962) 173.

SoLammp o

—

Received June 21, 1961.

Acta Chem. Scand. 16 (1962) No. 1



