Polynuclear Complexes: Criticism
Invited
LARS GUNNAR SILLÉN
Department of inorganic chemistry, The Royal Institute of Technology Stockholm 70, Sweden

B. S. Jensen ¹ has recently published a paper on "The determination of the composition and formation constants of polynuclear complexes", a subject to which our group in Stockholm has devoted some interest for the last ten years. He who reads and understands the various series of papers from our group ² will find that we endeavour to start without any previous assumptions on the composition of the complexes and that our present methods -- given sufficiently good "three-dimensional" data -- can deal with practically any set of polynuclear complexes; they are certainly not limited to sets of the "core and links" type, which correspond to exactly parallel Z curves.

Jensen's method requires that two species predominate in the solution. If there are only two species, however, one of them can be treated as the "core" and the other as a singular "core and links" complex. Then the curves Z(log h)B are parallel, Jensen's equation (14) or (19) is exactly valid, and the data can be treated in a much simpler way than he gives.

Let us now consider some of the chemical results that Jensen deduces from data of the Stockholm group.

Rossoitti and Rossoitti ³, from their data on the hydrolysis of VO₃⁺, deduced the formulas (VO₄)₃(OH)₇⁺ and VOOh⁺ and the formation constants log β₃⁺ = -6.88 ± 0.05 and log β₄⁺ = -6.0 ± 0.1. Jensen finds log β₃⁺ = -6.9 ± 0.3; he notices the deviations that indicate another complex but fails to find its formula or formation constant.

Rossoitti and Rossoitti ⁴, from their data on the acid hydrolysis of VO₄⁺, deduced the equilibria (25°C, 1 M (NaClO₄): 10VO₄⁺aq + 8 H₂O = H₁⁰V₁₅O₂₆aq + 14H⁺, log β₁₅ = -6.75, H₁⁰V₁₅O₂₆aq = H₁⁰V₁₅O₂₆⁻aq + H⁺, log K = -3.6, H₁⁰V₁₅O₂₆⁻aq = V₁⁰O₂₆⁻aq + H⁺, log K = -5.8 (1)

From these same data, Jensen ¹ deduces a different set of equilibria (notations below as in "Stability constants")

6VO₄⁺ + 7OH⁻ ⇌ (VO₄)₄(OH)⁷⁻,
log β₃⁺ = 94.6 ± 0.5
7(VO₄)₄(OH)⁷⁻ + 10 OH⁻ ⇌ (VO₄)₆(OH)₁⁰⁻,
log K = 100 ± 2. (2a)

With log K₄₋ = -13.8, which Jensen has used, this gives

6VO₄⁺ + 7H₂O ⇌ (VO₄)₄(OH)₇⁻ + 7H⁺,
log β₃⁺ = -2.0
7(VO₄)₄(OH)⁷⁻ + 10 H₂O ⇌ (VO₄)₆(OH)₁⁰⁻ + 10 H⁺, log K = -38. (2b)

Jensen claims (p. 498) "The above conclusions are well in accord with the experimental data". Among his several diagrams, however, one does not find any comparison of the experimental data with his theory (2), and with the Rossoittis's (1). Fig. 1 gives such a diagram (calculated using our computer program KUSKA) ⁴. The points are the experimental data, the solid curves are calculated with Rossoitti's theory (1), and the dotted curves from Jensen's (2). The reader is invited to compare the agreement.

He who is interested may then read Jensen’s "general discussion" where he claims, among other things, "A distinct

---

1. B. S. Jensen
2. "Stability constants"
3. Rossoitti and Rossoitti
4. Rossoitti and Rossoitti
advantage is that the primary polymerisation product often can be determined with certainty".

Those who would like to question (as we do ourselves sometimes) the conclusions reached by our group are cordially invited either

a) to present a better set of data (more accurate or covering a broader range of concentrations), or

b) to give another set of reactions and equilibrium constants that explain our data as well as or better than those deduced by our methods.

It is hard to see that B. S. Jensen's contribution means any progress in our methodical or chemical knowledge.


Received August 16, 1961.