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Vibrational Mean-Square Amplitude Matrices

XIV. Treatment of Linear Symmetrical X,Y, Molecules with
Application to Cyanogen

S.J. CYVIN and E. MEISINGSETH

Institutt for teoretisk kjemi, Norges tekniske hggskole, Trondheim, Noriway

A theoretical treatment of the vibrational mean-square amplitude
quantities for linear symmetrical X,Y, molecules is presented. The
evaluation of the generalized (parallel and perpendicular) mean-square
amplitudes for the four types of interatomic distances is included.
Numerical computations for cyanogen are reported, viz. those of the
mean amplitudes of vibration, and the mean-square parallel and per-
pendicular amplitudes, the latter ones having been used for calculating
the shrinkage” effects.

he mean-square amplitude matrices ! have proved to be very useful in

spectroscopic calculations, especially those associated with electron-diffrac-
tion investigations. In the present paper some studies on cyanogen are reported,
which have been actuated by recent electron-diffraction work on this molecule,
to be communicated later. The theoretical treatment here presented may also
be adapted to butatriene 2, if this molecule is considered as a linear four-
particle structure (CH,=C=C=CH,).

THEORETICAL TREATMENT

The treatment is based on the assumption of small harmonic vibrations.3
Symmetry coordinates. The chosen symmetry coordinates are specified
below.

Symmetry species Z,*: S, = 2%, + 1)
S, =d
» oo 2,T 8y = 24 —r,)
» y g S, = 24 RBD)}(a,—ay,)

Sy = 2°4RD)}e,"—ay)
» y I Sz = 274 RD) (g, + ay)
Sg, = 2-%(RD)%(¢11' + a,’)
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Fig. 1. Notation and orientation used for the linear symmetrical X,Y, molecular model.
Notice the numbering of atoms,

Here r; and r, designate the X—Y stretching coordinates, d designating the
X —X stretchings. a, and a, designate the XXY angle bendings in the zz plane,
a,' and a,’ designating those in the yz plane (see Fig. 1). R and D are used to
identify the X—Y and X—X equilibrium distances, respectively.

Cartesian displacement coordinates. With the chosen orientation of the
Cartesian coordinate axes and numbering of the atoms (see Fig. 1) the following
expressions have been found for the Cartesian displacement coordinates in
terms of the symmetry coordinates.

2, = 24 D|R)mzK-18,, + 23 B/D)imy(myx + my) 1S,

v, = 24 D|R)Img K18y, + 2} R|D)dmy(my + my) Sy,

2 = _2-%81_%82'—2-1}7”)((""1: + my) S,

xy = —2 4 D[R)ImyK18,, + 2°H(R|D)*my(my + my) S5,

Yy = —2YD|R)tmy K18, + 2°}(R|D)tmy(my + my)1Sy,

2o = 288, + 38,— 2 ¥my (my + my) 1S,

2y = —2¥D|R)H1 + 2(R/D)Imy K-S, —2 HRID)¥my(myx + my)1S;,
Ys = —2¥D|R)H1 + 2(R/D)ImyK8,,— 2} RID)tmy(my + my) Sy,
zg=—% 8, + 2-1}mv(mx + my) 1S,

Xy = 2“}(D/R)%[1 + 2(R/D)Imy K8, — 2'1}(R/D)*my(mx + my) 2S5,
Yo = 24 (D/R)Y1 + 2(R|D)Imy K8, —2 ¥R/ R)tmy(myg + my)Sy,
2, =38, + 2-*mv(mx + my) 18,

Here it has been made use of the abbreviation
K = (D|R)(mx + my) + 4[1 + (B|D)Imy

mx and my denote the X and Y atomic masses, respectively.

F and G matrices. The set of equations connecting force constants and
normal frequencies are given in the book of Herzberg ¢ and shall not be repeated
here. The Wilson G matrix elements may be evaluated by the standard met-
hods 2,5-7. For some aspects of the GF matrix treatment of the linear sym-
metrical X,Y, molecular model in particular, see 8. For the linear vibrations,
see also Ref.?

2 matriz. The six non-vanishing elements of the symmetrized mean-

I

square amplitude matrix (X = (SE}) are defined by
21 = <Sl2>: 222 = <S222’ 212 = <Sl‘§2>’ 9
23 = <'S’32>7 24 = <S4a> = <S4b>, 25 = <Ssa> = <S5b>
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One has the following relations for the normal frequencies in terms of the
2 matrix elements.

4, 4+ 4y = myZ) + § (mx + my)Z, + 21}"”'&(212
142—%"@me22 —215%)
4; = mymy(my + my)1X,
4, = mymy KX,
45 = (B/Dymymy(mx + my) 2y
The normal frequencies are implied according to
= (h/8a%,) coth(hv,/2kT)

where % is Planck’s constant, & Boltzmann’s constant, and 7' the absolute
temperature.

Additional mean-square amplitude quantities. Further mean-square ampli-
tude quantities will be introduced for the parallel vibrations of the considered
molecular model, viz.:

Oy = <712> = <7'22>, Opy = <7'17'2>:
04 = (A%, ayy = {1, d) = {rod)

For these quantities in terms of the 2 matrix elements introduced above, one
finds

0y = %(21 + 23)) Opp = % (21—23))
Gd — 22, O',d = 2‘*212

The quantities ¢, and o, represent the mean-square amplitudes of vibration
for the (bonded) X—Y and X—X distances, respectively, o,, and g,; being
the interaction mean-square amplitudes.

For the mean-square amplitudes of vibration for the (non-bonded) X...Y
and Y...Y distances one finds

d 0:+d=0'r+0'd+20m=%21+22+2%212+%23
an

Oria = 20, + 20, + 04 + 40, = 22, + X, + 83X,

respectively.

Mean-square perpendicular amplitudes and the shrinkage’” effect. The
shrinkage effect in linear molecules, which has been observed from electron-
diffraction by Bastiansen et al.2,1%11 may be calculated spectroscopically by
means of the mean-square perpendicular amplitudes 12, as has been pointed
out by Morino 13, In the present case of the symmetrical X,Y, molecular model,
the following two independent shrinkage effects, given to the first approxima-
tion (valid for small harmonic vibrations), will be encountered:

88 _Yrta T T
"MTR¥D R D
LR Twta 2, 1
¥+ = o9R + D R D
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Here
7, = {(@3,—23)") = {(Z2—2)® = {(H1—¥)> = {(Ya—y)>
7y = {(#3—2)® = {(¥3—¥)»
Tria = {(@B—2)% = {(@B—23) = {(Y1—¥)> = {H2—ya)>
Torta = {(T3—2)" = {(y;—y)»

Evaluation of the generalized mean-square amplitudes. Let and arbitrary atom
pair ¢j be considered. The corresponding generalized mean-square amplitudes
may be expressed as {(§;—¢&;) (n,—mn;)>, where &7 = x, y or z. In the present
case the given expressions of the Cartesian displacement coordinates make it
possible to detect the transformation coefficients in any expression of the type

£—& =3 A5S, = A5 S
or ” ~
n—n =2 AZ,, 8, = AllS

Hence the generalized mean-square amplitudes may be evaluated in terms of
the X matrix elements according to

&) m—m;)> = AFEA]

For the mean-square parallel amplitudes, corresponding to & = n = z, the
above given expressions for g,, 6;, 0,4, and 4,1, are obtained. These expres-
sions, referred to as the mean-square amplitudes of vibration, are identical
with the mean-square parallel amplitudes to the first approximation.

As to the mean cross product in the present case, all of them vanish because
of symmetry.

The results obtained for the mean-square perpendicular amplitudes are
given in the following.

Table 1. Mean-square parallel (o) and perpendicular (v) amplitudes for 12C,uN, at T' = 0

and 298°K.,
Generalized mean-square amplitudes
Distance Symbol (A? units)

T =0 298°K

C=N o, 0.001215 0.001217
7, 0.007590 0.012955

Cc-C (7] 0.001730 0.001758
T 0.004948 0.005885

C.--N Opta 0.002055 0.002102
Tyta 0.006006 0.011082

N---N Oytd 0.002381 0.002452
Tor+d 0.000507 0.000603
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Table 2. Mean amplitudes of vibration for ?C,uN; at T = 0 and 298°K,

Mean amplitude of vibration
Distance Symbol (A units)
T =20 298°K
C=N Uy, 0.0349 0.0349
C—-C Uy 0.0416 0.0419
C.--N Uyt-g 0.0453 0.0458
N.--N Ugytg 0.0488 0.0495

7, = 3(D[R)}{mx + [1 + (B|D)Imy}K-2X; + $(R/D)Z;
7y = 2(D/R)[1 + 2(R|D)Pmy*K—*%,
Tyra = 3(D[R) {mx—[1 + 2(R/D)myPK2X, + }(R[D)Z;
Ty+a = 2(D[R)mx? K22,

For the meaning of K, see the above section of Cartesian displacement coordi-
nates.

NUMERICAL COMPUTATIONS FOR CYANOGEN

The adopted values for the equilibrium interatomic distances are B = 1.157
A for C=N14,55 and D = 1.380 A for C—C 5, which are not much different
from the values used by Langseth and Mgller ¢ in their calculations of the
potential constants for cyanogen. In the present calculations the interaction
force constant value F, == 0.08485 mdyne/A (referred to the symmetry coor-
dinate system) was taken from Langseth and Moller . To determine the
remaining force constants, the 12C, 14N, vibrational frequencies taken from the
same paper 16 were applied, viz. Raman frequencies from the investigation of
the mentioned authors ¢, together with some earlier infrared frequencies 7.
The final values showed only slight deviations from those of Langseth and
Mgller 16, mainly due to the different equilibrium parameters employed.*

Table 3. Shrinkage effect for 12C,UN, at T' = 0 and 298°K.

Shrinkage effect (A unit
Distance Syn’lbol rinkage ertec (A uni s)
T=0 298°K
C---N % 1a 0.008 0.011
N.--N & 0.017 0.024
of +-d

* The present values are F, = 15.654, I, = 7.308, F';, = 0.08485 and F; = 17.582 for the
linear vibrational force constants, all in mdyne/A. It should be noticed that Langseth and Maller 6
uses different symmetry coordinates from the present ones. In terms of their notation for the
potential constants, one has: F; = 4a,,, F; = 2(a,, + ay, + 2a,,), Fi; = Si(au + a,;), and
Fg = 4ag,.
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The X matrix elements were calculated according to!
X=LAL

where L is the normal coordinate transformation matrix (8 = L@) and has
been determined by the standard method of characteristic vectors 3. The final
results, obtained by means of the 2 matrix elements, are presented in Tables
1—3. Table 1 shows the mean-square parallel and perpendicular amplitudes
for the four types of interatomic distances. Table 2 shows the mean amplitudes
of vibration for the same types of distances, viz. ux_y = o,}, ug_x = o;*
Ug...y = a} v and Uy .y = 02*; 4o Finally, in Table 3 the -calculated
shrinkage effects are shown.

It is intended to compare the presently calculated mean amplitudes of
vibration and shrinkage effects with the results from an electron-diffraction
investigation now in progress.
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