proportion of moderately acid albumins than the other species. The proportion of basic, non-absorbing proteins is smaller in oat (20 %) than in the other species (winter wheat 38 %, summer wheat 33 %, rye 32 % and barley 32 %).

Received July 22, 1961.

Synthesis of an Oxime Analogue to Atropin

L.-E. TAMMELIN and A. FLORMARK

Research Institute of National Defence,
Dept. 1, Sundbyberg 4, Sweden

Atropin is the drug of choice in treatment of organophosphorous anticholinesterase poisoning. Very promising results have also been obtained with oximes such as pyridine-aldoxime methiodide or mono-isonitrosocetone. It seemed thus, without any pretention of strict pharmacological thinking, tempting to prepare an oxime closely analogous to atropin such as phenylglyoxylic acid tropylester oxime, see formulae I—III.

Iso-nitrosation by butyl nitrite was used as a final step in the synthesis. This method may result in iso-nitrosation of other groups than the methylene group of the phenyl-acetic acid. Thus the structure of the final product was studied by infrared spectroscopy.

Results. Phenyl-glyoxylic acid tropylester oxime has been prepared and the structure of the compound has been confirmed by the following results from IR-spectra.

Phenyl-glyoxylic acid ethylester oxime. The 3 500—2 500 cm⁻¹ region: An absorption band at 3 220 cm⁻¹ can be ascribed to intra-molecular bonded OH. Between 3 180 and 2 990 cm⁻¹ the CH absorption bands are found.

The 1 800—1 600 cm⁻¹ region: At 1 725 cm⁻¹ a strong absorption band can be ascribed to C=O and at 1 685 cm⁻¹ a weaker band may indicate presence of C=N.

The 1 600—1 400 cm⁻¹ region: At 1 575 cm⁻¹ and 1 490 cm⁻¹ weak absorption bands characteristic of the benzene ring in a conjugated system are found.

The 1 400—1 100 cm⁻¹ region: At 1 300 cm⁻¹ an absorption band occurs which might be ascribed to OH and at 1 195 a strong band indicates ester C=O.

Phenyl-glyoxylic acid tropylester oxime. The 3 500—1 800 cm⁻¹ region: An absorption band at 2 990 cm⁻¹ can be ascribed to CH. At 2 800—2 200 cm⁻¹ and 2 100—1 800 two broad bands occur which can be ascribed to \(\equiv \text{NH} \).

The 1 800—1 600 cm⁻¹ region: At 1 710 a strong absorption band can be ascribed to C=O and at 1 665 a weak band may be ascribed to C=N.

\[
\begin{align*}
\text{H}_2\text{C} & \quad \text{CH}_2 \\
\text{H} & \quad \text{C} \quad \text{N} \quad \text{CH} \\
\text{H}_2\text{C} & \quad \text{CH} \quad \text{CH}_2 \\
\text{H} & \quad \text{C}=\text{O} \\
\text{H} & \quad \text{C}=\text{O} \\
\text{H} & \quad \text{C}=\text{N} \quad \text{OH} \\
\text{H} & \quad \text{C}=\text{N} \quad \text{OH} \\
\end{align*}
\]

Fig. 1. I is atropin. II and III are protomeric forms of phenyl-glyoxylic acid tropylester oxime.

The $1600 - 1400$ cm$^{-1}$ region: At 1575 cm$^{-1}$ and 1500 cm$^{-1}$ weak absorption bands characteristic of the benzene ring in a conjugated system are found.

The $1400 - 1100$ cm$^{-1}$ region: At 1290 cm$^{-1}$ an absorption band occurs which might be ascribed to OH and at 1205 a strong band indicates ester C=O.

The IR-spectra and earlier findings strongly support the structure given in the preceding formulae. The absorption bands between 2800 and 1800 cm$^{-1}$ show that formula III is dominating. Preliminary pharmacological tests indicate that phenylglyoxylic acid tropylester oxime has a weak atropin effect.

Experimental. The syntheses were performed as follows.

Phenyl-glyoxylic acid ethylester oxime was prepared as described by Wislicenus and Grützner. Found m.p. 112°C.

Phenyl-acetic acid tropylester was prepared as described by Barrowcliffe and Tutin. Found m.p. of picrate 171°C.

Phenyl-glyoxylic acid tropylester oxime was prepared as follows. 4.4 g of phenyl-acetic acid tropylester and 1.75 g butyl nitrite in 100 ml sodium distilled ether at -20°C were added to potassium ethoxide in 50 ml of ether at -20°C, prepared from 0.66 g potassium. The mixture was stirred for 45 min and temperature rose to 0°C. After cooling 30 ml of ice-cooled water were added. After shaking, the aqueous phase was separated and treated with carbon dioxide while cooling. After 3 min a yellow red precipitate was formed. The precipitate was filtered off and washed with water and ether. Yield 0.75 g. The compound was recrystallized twice from ethyl acetate. M.p. 196°C. (Found: C 66.8; H 7.0; N 9.8. Calcd. for $\text{C}_{14}\text{H}_{16}\text{N}_{2}\text{O}_{3}$ (288.3): C 66.7; H 7.0; N 9.7).

Infrared spectra of phenyl-glyoxylic acid tropylester oxime and phenyl-glyoxylic acid ethylester oxime were recorded using potassium bromide pellets.

Received July 17, 1961.