The Rate of Decomposition of Urethane in Acid Solution II

Chemical Laboratory, Royal Veterinary and Agricultural College, Copenhagen, Denmark

In an earlier paper ¹ the rate of decomposition of urethane was studied at 37.0°C in concentrated solutions of hydrochloric and sulphuric acids (c M). The first-order rate constant k (in sec⁻¹) could, up to c = 6, be expressed for solutions of hydrochloric acid by

$$\log(k/c) = 0.705 - 8 + 0.063 c$$

and for solutions of sulphuric acid by

$$\log(k/c) = 0.801 - 8 + 0.0895 c$$

It was suggested that the rate-determining step is a bimolecular reaction between a urethane molecule and a hydrated hydrogen ion (probably $H(H_2O)_4^+$, but here for simplicity written as H^+) on which reaction the strong acids exert a kinetic salt effect. In the earlier paper it was for both acids assumed that $[H^+] = c$. For sulphuric acid this is only a very rough approximation. The values of $[H^+]$ given in Table 1 are presumably more accurate. They were computed from estimates of the two dissociation constants of sulphuric acid made by Young and Blatz ² mainly on the basis of measurements of intensities of Raman-

Table 1. Rate of decomposition of urethane at 37.0° C.

	Sulphuric acid			Perchloric acid	
-	c	[H+]	$k \times 10^7$	c	$k \times 10^7$
	$\frac{1.00}{2.00}$	$\frac{1.07}{2.11}$	0.78 1.90	1.00	0.497
	3.00 4.00	3.13 4.14	3.55 5.70	2.00 3.00 4.00	$0.968 \\ 1.44 \\ 2.05$
	5.00 6.00	5.11 6.01	8.98 12.86	5.00 6.00	2.94 4.23
	6.96 8.00	6.68 7.15	$\begin{array}{c} 17.6 \\ 22.2 \end{array}$	7.00 8.00	6.03 7.69
	$\begin{array}{c} 8.97 \\ 10.00 \end{array}$	7.48 7.11	24.9 24.2		
L					

Fig. 1. Plot of log(k/[H+]) against c for the decomposition of urethane in solutions of sulphuric acid (open circles), hydrochloric acid (closed circles), and perchloric acid (semi-closed circles).

lines carried out by Rao³. In Fig. 1 is shown that, when $\log(k/[\mathrm{H}^+])$ is plotted against c, the points fall (up to c=7) very close to a straight line with the equation

$$\log(k/[H+]) = 0.768 - 8 + 0.094 c$$

By extrapolation to c=0 is obtained $k/[\mathrm{H^+}]=5.86\times 10^{-8}$, a value that is higher than that found for hydrochloric acid (5.07×10^{-8}) , possibly due to catalysis by hydrogen sulphate ions.

Measurements were also carried out on solutions of perchloric acid (prepared by dilution of Merck's Perchloric Acid, 60 %, pro analysi). The results are given in Table 1, and in Fig. 1 is shown a plot of $\log(k/[\mathrm{H}^+])$ against c (where $[\mathrm{H}^+] = c$). Instead of a straight line is obtained a curve with a minimum for a value of c between 2 and 3. By extrapolation to c=0 is, however, found nearly the same value of $k/[\mathrm{H}^+]$ as for hydrochloric acid.

- Pedersen, K. J. Acta Chem. Scand. 14 (1960) 1448.
- Young, T. F. and Blatz, L. A. Chem. Revs. 44 (1949) 102.
- 3. Rao, N. R. Indian J. Phys. 14 (1940) 143.

Received June 3, 1961.