Separation of Human Skin Waxes by Gas Chromatography

E. O. A. Haarri* and E. C. Hornig

Laboratory of Chemistry of Natural Products,
National Heart Institute, Bethesda,
Maryland, USA.

Wax esters occur widely in both plants and animals. They were among the first natural products to be studied in modern times (cetyl alcohol was obtained from sperm oil by Chevreul in 1817†), but they have received very little attention in recent years. Their study is difficult because the isolation and identification of pure compounds has required prolonged fractionation procedures.

The development of gas chromatographic methods for the separation of steroids ‡ suggested that related techniques might be developed for work with wax esters. However, waxes usually have a wide molecular weight range, and under isothermal conditions this leads to unduly long retention times for higher members of the series. Further, for many studies compounds containing up to about forty carbon atoms must be separated. Preliminary studies indicated that suitable methods could be developed by employing a relatively thin film of thermostable liquid phase in the column, and by using a temperature-programmed procedure. Phases with sufficient thermal stability for this work were found to be silicone polymer SE-30 (General Electric Co.), ethylene glycol isophthalate (EGIP), neopentyl glycol succinate (NGS) and fluoroalkyl silicone polymer QF-1 (Dow-Corning Corp.). Of these, SE-30 was the most useful because of its ability to separate monoene and diene esters from saturated esters. With temperature programming from 100° to 280° and with a 1% SE-30 column it was found possible to scan a wide molecular weight range, and to separate unsaturated and saturated esters from about C10 to the C44 level.

Two applications were examined.

Fig. 1 shows a separation of the wax esters of a commercial sample of spermacetin. It is known that cetyl palmitate is the major component of this material §. This is clearly indicated by the analytical record; the presence of even and odd-numbered homologs is also indicated. The absence of unsaturated esters was confirmed by analytical gas chromatographic examination of the acid and alcohol fractions resulting from hydrolysis of the wax.**

Fig. 2 shows a separation of the human wax esters of the skin surface lipid film. Skin surface lipids were collected by acetone washing, and a wax fraction containing both wax esters and cholesterol esters was separated by chromatography on silicic

* Visiting Scientist of the National Heart Institute from the University of Turku, Turku, Finland.

** Early studies on sperm oil indicate that unsaturated compounds are present; these are evidently lost in the commercial isolation process used for spermacetin.

Fig. 1. Separation of components of spermacetin. Conditions: 6 ft. × 3.4 mm glass coil column; 1% SE-30 (General Electric Co.) on 100–140 mesh Gas-Chrom P; argon inlet pressure 30 psi.; argon ionization detector. Heating rate, 1.73°C/min. The sample was introduced in benzene solution. Carbon numbers refer to total carbon content of wax esters; full scale deflection as shown is 1 × 10⁻¹⁴ amp.

Acta Chem. Scand. 15 (1961) No. 4
acid 4. The major wax esters were recognized as a monene and a diene C_{36} ester by comparison with authentic (synthetic) samples of saturated and unsaturated wax esters. Homologs differing by a $-\mathrm{CH}_2\mathrm{CH}_2-$ group are also indicated in the figure. This separation, while giving a precise definition of the molecular weight range of waxes of the human skin surface, indicates only the combined chain length present in the esters; it does not indicate the individual acid or alcohol chain lengths. The ester fraction was saponified, and the distribution of individual acids and alcohols was determined by analytical gas chromatography (the acids were separated as methyl esters, and the alcohols were separated both free and as acetates). The major alcohols were found to be eicosanyl alcohol and a monoene C_{36} alcohol. The occurrence of saturated and unsaturated C_{36} alcohols is in agreement with mass spectroscopic work carried out in a study of human hair fat. 5 The "iso" C_{36} alcohol reported in an earlier study of sebum alcohols 6 was found only as a relatively minor component. The major acid was found to be palmityoleic acid. These results suggested that the two chief C_{36} wax components were eicosanyl palmitoleate and eicosanyl palmitylate (unsaturated bond position unspecified in the alcohol). To confirm this finding, a preparative separation on a milligram scale was carried out for the major C_{36} ester. An analytical examination of the acids and alcohols in the isolated fraction showed, that this material was in fact almost entirely derived from an eicosanyl alcohol and palmitylate acid. Small amounts of branched chain acids and alcohols were also present, indicating that some branched chain esters as well as straight chain esters were present originally.

As far as we can determine, unsaturated waxes of the structure found here have not been reported previously, in spite of the almost universal occurrence of long chain wax esters in biological systems.

The gas chromatographic techniques used for this work should prove useful for studying many other natural products.

Received April 21, 1961.