Cleavage of Alkyl Cysteine Sulphoxides by an Enzyme in Onion (Allium cepa)

FLOYD P. KUPIECKI* and ARTTURI I. VIRTANEN

Laboratory of the Foundation for Chemical Research, Biochemical Institute, Helsinki, Finland

An enzyme which is specific for alkyl cysteine sulfoxides has been partially purified from onion. The enzyme appears to require pyridoxal phosphate as a cofactor, but shows no stimulation in activity by various metals. It shows a very low order of inhibition by various sulphydryl group reagents. Electrophoresis shows a single protein peak at two pH levels.

The first report of the enzymatic degradation of an alkyl cysteine sulfoxide was made by Stoll and Seebeck. They have shown that an enzyme in garlic (Allium sativum) catalyzed the splitting of alliin (allyl cysteine sulphoxide) to pyruvic acid, ammonia, and allicin according to the following equation:

\[
\begin{align*}
&\text{CH}_3 \quad \text{CH} \quad \text{CH}_3 \\
&\text{CH} \quad \text{CH}_2 \quad \text{S} \rightarrow \text{O} \\
&\text{CH}_3 \quad \text{CHNH}_2
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_3 \quad \text{CH} \quad \text{CH}_3 \\
&\text{CH} \quad \text{CH}_2 \quad \text{HSO} \\
&\text{CH}_3 \quad \text{CHNH}_2
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_3 \quad \text{CH} \quad \text{CH}_3 \\
&\text{CH} \quad \text{CH}_2 \quad \text{OS} \\
&\text{CH}_3 \quad \text{CHNH}_2
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_2 \quad \text{CH} \quad \text{H}_2\text{O} \\
&\text{CH}_2 \quad \text{CH} \quad \text{H}_2\text{O} \\
&\text{CH}_2 \quad \text{CH} \quad \text{H}_2\text{O}
\end{align*}
\]

\[
\begin{align*}
&\text{CH}_2 \quad \text{CH} \quad \text{H}_2\text{O} \\
&\text{CH}_2 \quad \text{CH} \quad \text{H}_2\text{O} \\
&\text{CH}_2 \quad \text{CH} \quad \text{H}_2\text{O}
\end{align*}
\]

These authors postulated that the enzyme, allinase, brought about the initial cleavage and that the primary products were split spontaneously to allicin, pyruvic acid, and ammonia.

Of the alkyl cysteine sulfoxides occurring naturally, methyl cysteine sulfoxide appears to have the widest distribution. It occurs in several members of the Liliaceae and Cruciferae families as well as sporadically in the families Compositae (in Lactuca sativa L.), Umbelliferae (in Cryptotaenia japonica Hasskare) and Leguminosae (Phaseolus vulgaris L.). Propyl- and allyl

* Fulbright Research Fellow, 1959—1960. Present address: Departement of Biological Chemistry, University of Michigan, Ann Arbor, U.S.A.
Cysteine sulfoxides have been reported only in Liliaceae, where they are less widely distributed than is the methyl homologue. Ethyl cysteine sulfoxide has thus far been reported only in Ipheion uniforum, a member of Liliaceae. The reported occurrence of specific alkyl cysteine sulfoxide splitting enzymes is restricted to the Liliaceae family.

The known occurrence in appreciable quantities of methyl- and propyl cysteine sulfoxides in onion 4, and the release of pyruvic acid in fresh onion extracts 5,6 has led us to choose this plant for studying the cleavage of alkyl cysteine sulfoxides. The following is a report on the partial purification of the enzyme and some of its properties.

EXPERIMENTAL

Preparation of enzyme. All steps were carried out at 0° unless otherwise indicated. 800 g of mature onions freed of skins, tops, and roots were homogenized in a "Waring type" blender with 400 ml of 0.10 M potassium phosphate, pH 7.4, for 3 min in four equal portions. The thick suspension was stirred for 30 min and filtered through cheese cloth. The filtrate was centrifuged at 12 000 x g for 15 min. 40 mg per ml of charcoal was added to the bright yellow solution. After stirring for 15 min the charcoal was removed by centrifugation. This step removes a large amount of the coloured non-protein material as well as about one-half of the proteins. The resulting supernatant solution is almost colourless.

Calcium phosphate gel 7 (1 mg for each 3 ml of solution) was added and after stirring 15 min the suspension was centrifuged. There is only a small increase in specific activity following this step, but more of the non-protein material is removed and the solution becomes colourless.

The enzyme solution was brought to 0.8 saturation by the addition of solid ammonium sulphate during a 20 min period. After stirring 45 min Hyflo Super Cel (1 g per each 200 g of onion) was added and stirring was continued 15 min longer. The precipitate was removed by centrifugation and the Hyflo was washed twice with 0.05 M potassium phosphate pH 7.4 to give a final protein concentration of 30—35 mg per ml. The enzyme solution was brought to 0.40 saturation with ammonium sulphate, stirred 30 min and centrifuged. The precipitate was dissolved in the same phosphate buffer as above to give a solution containing 40—45 mg protein per ml. This was again treated with ammonium sulphate. The fraction obtained at 0.25 saturation was discarded, the solution was brought to 0.60 saturation and the precipitate was dissolved in 0.05 M potassium phosphate, pH 7.4. The resulting enzyme solution was clear and bright yellow. The enzyme is stable at all stages of purification to storage at —20° for several weeks. All fractions, except the extract, retain almost full activity when stored at 0° for 1 to 2 weeks. Protein concentration of the enzyme solutions was determined spectrophotometrically by light absorption at 280 and 260 μμ μ μ.

Enzyme assay: The enzyme was assayed by measuring the amount of pyruvic acid liberated according to the method of Friedemann and Haugen 8. The standard assay system contained 125 μμμoles of potassium phosphate buffer, pH 7.4, 2.5 μμμoles MgCl2, 25 μμμg of pyridoxal phosphate, 13 μμμoles allin (or other alkyl cysteine sulfoxide), and enzyme in a final volume of 1.0 ml. All components except the substrate were preincubated 10 min at 20°. Addition of substrate was followed by incubation at 20° for 20 min. A control tube without substrate was included for each sample of enzyme. No pyruvate was generated from the substrate in the absence of enzyme. 0.25 ml of 40 % TCA was added after incubation and 0.40 ml aliquots were used in the determination of pyruvic acid. A unit of enzyme is defined as that amount which yields 1 μμμole of pyruvic acid under the assay conditions. The specific activity of the enzyme is expressed as the number of units per mg of protein.

RESULTS

Electrophoresis. The enzyme solution was subjected to electrophoresis at two stages of preparation and at pH 6.8 and 7.8. The apparatus was the Perkin
Elmer Model 38. Fig. 1A shows the pattern given after calcium phosphate gel treatment. To concentrate the protein by a factor of 10 the enzyme was subjected to lyophilization, dialyzed against distilled water and lyophilized again before dialysis against the buffer used for electrophoresis. The fraction obtained at 0.25—0.60 saturation with ammonium sulphate was also subjected to electrophoresis. Both preparations showed similar results at both pH's. The calcium phosphate gel supernate, however, contained a second peak which did not move at either pH. Fig. 1B shows that this peak was removed by precipitation with ammonium sulphate.

Enzyme activity as a function of pH. Fig. 2 shows that the enzyme is active over the range of pH 5.6 to 9.0, with maximal activity at pH 7.4.

Substrate specificity. Table 1 shows the various substrates that have been tested with the enzyme. As can be seen in the table only sulfoxides that are derived from cysteine are cleaved by the enzyme.

Inhibition by carbonyl group reagents. Table 2 gives the results obtained when the enzyme was tested with the three carbonyl group reagents: hydroxyl-
Table 1. Effect of carbonyl group reagents on enzymatic activity. The standard assay
described in the text was used with some modifications. In experiments numbered 1
pyridoxal phosphate was omitted and the appropriate inhibitor was preincubated with all
components except allin for 20 min at 20°. In experiments numbered 2 the inhibitor
was preincubated 10 min with the other components, the pyridoxal phosphate was added
and preincubation was continued for 10 min. The order of preincubation of pyridoxal
phosphate and inhibitor was reversed in experiments numbered 3. Pyridoxal phosphate
concentration was 4 × 10⁻⁸ M.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydroxylamine</td>
<td>10⁻⁴</td>
<td>38</td>
<td>10⁻⁵</td>
<td>75</td>
<td>10⁻⁴</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>Hydroxylamine + pyridoxal-PO₄</td>
<td>10⁻⁴</td>
<td>13</td>
<td>10⁻⁵</td>
<td>58</td>
<td>10⁻⁴</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Pyridoxal-PO₄ hydroxylamine</td>
<td>10⁻⁴</td>
<td>10⁻⁴</td>
<td>5</td>
<td>38</td>
<td>10⁻⁴</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>Hydrazine</td>
<td>10⁻⁴</td>
<td>12</td>
<td>10⁻⁵</td>
<td>25</td>
<td>10⁻⁴</td>
<td>66</td>
</tr>
<tr>
<td>5</td>
<td>Hydrazine + pyridoxal-PO₄</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁵</td>
<td>17</td>
<td>10⁻⁴</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>Hydrazine + pyridoxal-PO₄</td>
<td>10⁻⁴</td>
<td>10⁻⁴</td>
<td>0</td>
<td>2</td>
<td>10⁻⁴</td>
<td>37</td>
</tr>
<tr>
<td>7</td>
<td>Isonicotinic hydrazide</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Isonicotinic hydrazide + pyr. -PO₄</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁴</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Isonicotinic hydrazide + pyr. -PO₄</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁴</td>
<td>0</td>
<td>10⁻⁴</td>
<td>0</td>
</tr>
</tbody>
</table>

amine, hydrazine, and isonicotinic acid hydrazide, at three concentrations. At
the concentrations used hydroxylamine was the most effective inhibitor. Hydrazine
was somewhat less effective, while isonicotinic acid hydrazide failed to
show any inhibition at these concentrations.

Stimulation by pyridoxal phosphate. The stimulation due to pyridoxal
phosphate is shown in Table 3. As can be seen in the table, very little increase
in pyruvate generation is found when pyridoxal phosphate is added to the
 crude extract. The stimulation shown in other fractions is about 40 %. Diallysis reduces enzymatic activity to less than one-half (Expts. 4 and 5). The stimulation due to pyridoxal phosphate is, however, the same in each case.

The effect of sulphydryl group inhibitors on enzyme activity. The following
inhibitors were tested at each of the molar concentrations, 10⁻⁴, 10⁻⁵, and 10⁻⁶: p-chloromercuribenzoate, N-ethylmaleimide, iodosobenzoate; none inhibited
at these concentrations. The latter two were also tested at a concentration of
10⁻² M and were found to inhibit 30 % and 25 %, respectively. Iodoacetate
and iodoacetamide failed to inhibit at 10⁻² M but showed an inhibition of
25—30 % at 5 × 10⁻³ M. When corrected for an observed reaction with pyruvic acid, cyanide showed no inhibition even at 10⁻² M while sulphide inhibited
30 % at this concentration.
Cleavage of Alkyl Cysteine Sulfoxides

Table 2. Specificity of enzyme. The standard assay described in the text was used except with benzyl cysteine sulfoxide. Because of the low solubility the substrate concentration was only half of the concentration used in the standard assay.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>μmoles of 2,4-dinitrophenylhydrazone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alliin</td>
<td>2.49</td>
</tr>
<tr>
<td>Methyl cysteine sulfoxide</td>
<td>0.61</td>
</tr>
<tr>
<td>Ethyl</td>
<td>0.86</td>
</tr>
<tr>
<td>Propyl</td>
<td>0.53</td>
</tr>
<tr>
<td>t-Propyl</td>
<td>0.38</td>
</tr>
<tr>
<td>Benzyl</td>
<td>0.34</td>
</tr>
<tr>
<td>Cycloalliin</td>
<td>0</td>
</tr>
<tr>
<td>Cysteine</td>
<td>0</td>
</tr>
<tr>
<td>Methyl cysteine</td>
<td>0</td>
</tr>
<tr>
<td>Ethyl</td>
<td>0</td>
</tr>
<tr>
<td>Propyl</td>
<td>0</td>
</tr>
<tr>
<td>Allyl</td>
<td>0</td>
</tr>
<tr>
<td>S-Methylmethionine sulphonium bromide</td>
<td>0</td>
</tr>
<tr>
<td>S-Benzylmethionine chloride</td>
<td>0</td>
</tr>
<tr>
<td>Thiazolidine carboxylic acid</td>
<td>0</td>
</tr>
<tr>
<td>Methionine sulfoxide</td>
<td>0</td>
</tr>
<tr>
<td>Methionine sulphone</td>
<td>0</td>
</tr>
<tr>
<td>Cysteine sulphinic acid</td>
<td>0</td>
</tr>
</tbody>
</table>

DISCUSSION

The experimental data presented here show the results of our attempts to purify the S-alkyl cysteine sulfoxide splitting enzyme. Renis states that all attempts to purify the enzyme from onion were unsuccessful, although active crude extracts could be obtained in his laboratory. We have tried many of the usual procedures for enzyme purification, e.g. precipitation with ammonium sulphate, alcohol, or acetone. These procedures, in various combinations, together with gel absorption steps have given about 4—5 fold purification, but with serious losses in enzyme units. Dialysis was tried at various points in the purification and always resulted in a large loss of activity, only a part of

Table 3. The influence of pyridoxal phosphate on enzymatic activity. The standard assay was used except that pyridoxal phosphate was omitted from the experimental tube as well as the control tube (without substrate) where indicated.

<table>
<thead>
<tr>
<th>Expt. No.</th>
<th>Enzyme fraction</th>
<th>μmoles pyruvate released</th>
<th>% Stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>with pyridoxal-P</td>
<td>without pyridoxal-P</td>
</tr>
<tr>
<td>1</td>
<td>Extract</td>
<td>1.09</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>Calcium PO₄ gel supernate</td>
<td>1.07</td>
<td>0.76</td>
</tr>
<tr>
<td>3</td>
<td>Extract</td>
<td>1.55</td>
<td>1.44</td>
</tr>
<tr>
<td>4</td>
<td>Dialysed 0—0.40 (NH₄)₂SO₄ fraction</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>5</td>
<td>Undialysed 0—0.40 (NH₄)₂SO₄ fraction</td>
<td>0.69</td>
<td>0.49</td>
</tr>
</tbody>
</table>

which could be restored with pyridoxal phosphate. Pretreatment of the extract with the relatively large amount of charcoal, as described, removes most of the interfering materials and makes some further purification possible. The series of steps described here results in preparations which have a specific activity about six times as great as the original extracts. However, the electrophoretic pattern of the most purified fraction and failure to increase the specific activity beyond 6 suggest that the purity of the enzyme may already be fairly high.

In all experiments reported here the Mg\(^{++}\) ion was used routinely, although no stimulation by this ion or Al\(^{+++}\), Cu\(^{++}\), Co\(^{++}\), and Mn\(^{++}\) could be shown. Furthermore, a several fold excess of Versene failed to inhibit the reaction. The loss in units upon dialysis could be only partly regained by addition of pyridoxal phosphate. Addition of concentrated dialysate, boiled enzyme, or preparations from which protein was removed by alcohol did not further increase the activity.

The sharp pH optimum shown at pH 7.4 is in marked contrast to that reported by Stoll and Seebeck \(^1\) for the alliin cleaving enzyme from garlic. Their enzyme was active between pH 4 and 9, but showed a broad optimum range from pH 5 to 8. Unlike the garlic enzyme, which could be precipitated at pH 4, the onion enzyme lost all its activity after this precipitation.

As shown in Table 2, the enzyme cleaves all the alkyl cysteine sulfoxides that were tested and alliin is the best substrate. This fact is somewhat surprising since alliin appears to be absent from onion. An alkyl cysteine sulfoxide splitting enzyme has recently been purified 200 fold from \textit{Albizzia lophanta} by Schwimmer and Kjaer \(^1\) but it splits the S-alkyl cysteines as well as the sulfoxides.

At the present time it is not possible to state conclusively whether one or more enzymes are involved in cleaving the sulfoxides to pyruvic acid, ammonia, and alkyl thiosulphinates. We have tried recombination of various fractions a number of times and have never found any indications that more than a single enzyme could be involved.

REFERENCES

Received May 28, 1960.

\textit{Acta Chem. Scand.} \textbf{14} (1960) No. 9