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The Diffusion Process and the Diffusion Potential in

Relation to the E.M.F. of Concentration Cells

TORMOD FORLAND

N.T.N.F’s Institute of Silicate Science, N.T.H., Trondheim, Norway

Equations are given for the E.M.F. of a concentration cell with
transference and for the electrostatic potential drop over the con-
centration gradient. The change in electrostatic energy by charge
transfer is calculated and found to be very small. It is shown that
the diffusion process does not interfere with the cell reaction.

ln a previous paper Forland and Krogh-Moe! calculated the E. M. F.
of a concentration cell with transference. For a cell

A; (AB,Y:(AB),; Y; A

with an electrolyte of the two components A*Y™ and B*Y~ and with
electrodes reversible to A only, the E.M.F. may be expressed by the equation:

E.-F= B+q) (AFAY(I) _AFBY(I))

Nat+ay (1)
— — daF d ¢+
—ta+an(4F ayay — AF sy — f AN+ d A‘i_*_ d N,
A+(T)

Here E is the E.M.F., is Faradays number, the index (I) and (II) refer
to the two compartments of the concentration cell, {,+ and #3+ are transport
numbers for the ions A+ and B¥ referring to the Y ions as a reference frame,
N,+ and Ng+ are the ionic fractions of the two kinds of ions. 4F with index
is partical molar free energy of mixing and 4F with index is free energy of
mixing per mole mixture. The first and second term of the equation are the
free energy changes taking place in the electrolyte close to the two electro-
des. The last term is the free energy change over the region of the concen-
tration gradient.

Acta Chem. Scand. 14 (1960) No. 6



1382 TORMOD FORLAND

The above equation can be rearranged to the more convenient form:
AFAY(II)

= = t,+ — N+

E.-SF = AF pyqy— AF payqy) + f LA

J Nt d AF,
AF sy

From the equation in the differential form:
dE. F=—d4aF,, + 2 —TV———— d AF,y

one can also derive:

NB+

AFAY(II) == AFAY(I) — P
B

(2)

Thus by plotting corresponding values of Ny+/tz+ and K as coordinates
the partial free energy of the component AY is obtained as an area.

In the derivation of eqn. (1) it was assumed that dipol layers in the
concentration gradient will not change their electrostatic energy significantly
when an electrical charge is transported through the cell. It was further as-
sumed that the diffusion process did not interfere with the cell reaction so
the two processes could be treated separately.

It is the object of this paper to show that these assumptions are valid.

First it should be emphasized that an electrostatic potential in the con-
centration gradient of a concentration cell will in itself not affect the E.M.F.
of the cell, since the process taking place is a transport of a neutral compo-
nent from one side of the cell to the other. Only a change in the electrostatic
energy in the concentration gradient may be observed in the outer circuit
by the E.M.F. measurement.

THE ELECTROSTATIC POTENTIAL GRADIENT

The electrostatic potential gradient in a concentration gradient has been
calculated by Sundheim 2. As Sundheims reference system seems to be less
practical for the present problem, a slightly different derivation of the electro-
static potential gradient (grad ¢) will be given below.

We will consider the transports taking place in the gradient of the con-
centration cell:

AjAt B, Y :(AH,BH),; Y ;A
As a reference for the velocities of the particles in the system we will choose
the average velocity of the Y~ ions. We designate by :f.ﬁ, (7B+) the flux

in moles/cm?sec of ions A+(B*) and by T the electric current density in Far-
adays/cm?sec, all measured with respect to the average velocity of the Y

.z - -
ions. Thus J,+ + Jz+ = 1.
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The forces corresponding to the above fluxes are grad AF,y(4Fgy)

and grad ¢, respectively. Here A4F,y (4Fyy) is the partial free energy
of the component AY (BY) in cal/moles and ¢ is the electrostatic potential
in cal/Faradays.

The fluxes and forces are connected by the following linear equations:

'7.:’*' = — Lygrad 4F gy — Lysgrad AFpy — Lysgrad ¢ (3)
'7;;"' = — Lygrad 4F,y — Ly,grad AF sy — Lisgrad ¢ (4)
I =— Lygrad AF,y — Lg,grad 4Fgy — Lysgrad ¢ (5)

According to Onsager’s theory for microscopically reversible processes,
we have the following relations between coefficients:

Lyy = Lyy; Ly = Lyg; Lyg = Ly,
The coefficient Lg, is the specific elecrical conductance, », measured in Fara-

days 2/cal cm sec. By defining L,y = xt, and L,y = xt, and further introducing
the Gibbs-Duhem equation

N,+ grad AF,y -+ Ng+ grad 4Fp, =0 (6)

(in which it is assumed that the partial free energy of a neutral component
is not changed when the system is electrically charged) we obtain:

T+ = ~—(Lu — Ly, j::“ ) grad A4F,y —xt, grad ¢ (7)
B
.,7;+ = — (L — Ly g ) grad AF,y —xt, grad @ (8)
T =——x(t1—t2 % +) grad 4F,y —x grad ¢ (9)
B

Dividing eqns. (7) and (8) by (9) for the case that the composition
is uniform we have:

t, = l: Jf:] _ =itandi, = I:Jf: ] =ty
1 4AF, 1 4F,

where #,+ and ¢+ are the transport numbers of the cations referring to the
anions as a reference frame.

ForT =0 eqn. (9) gives:

grad ¢ = (ig+ g‘;: —ty+) grad AF,y (10)
To simplify calculations we introduce
. N,+ byt — N+
m = lg+ N+ — byt _—————N—B:—
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The electrostatic diffusion potential is equal to

AF—AY(H) i+ N, +
Ao = fm grad 4F, dx = ——f i—;—;—"— d AF,y cal/Faraday
AF—AY(I) ?

where z is the distance from one side of the cell. This integral is finite over
the whole concentration interval from N,+ = 0to N,+ = 1 as long as the
tat ty+
N,+ Wt or N, +
that the expression for the diffusion potential does not contain the concen-
tration gradient. This also implies that the electrostatic potential is not
changed when a small charge is transported through the cell.

If we express the E.M.F. of the cell in cal/Faraday and count it positive
from left to right, we see that the E.M.F. can also be expressed by the
equation:

is finite for small values of N+ and Ny +, respectively. It appears

E' = AFsxya) — AF sy 4 4o (12)

THE ELECTROSTATIC ENERGY CHANGE

Knowing the gradient of the electrostatic. potential, grad ¢, the electro-
static energy (U) in the concentration gradient can be calculated

U=1}fe (grad )2 d v (13)

v
where & is the absolute dielectric constant of the medium measured in Fara-
day?/cal cm, and v is a volume covering the concentration gradient. The
change in this electrostatic energy by the transport of electrical charge (@
measured in Faradays) through the gradient is given by

6U a FAY(X:)
30 =0 & f em? (grad AF,y)? dv) = 2 30 f emigrad AF,,d AF,, (14)
v F, AY(1)

where ¢ is the cross-section of the cell. The only factor of the integral which
is changed by the transfer of dQ is grad 4F,y. We thus have

6U q 2 grad AF’AY =
[ |47, 44Fs (15)

[ 2 grad AFAY ] _d AFAY B a ] NA+ )]
_d4F,, [0 ( 1 .
"~ d Ny+ [9Q \9z/0N,+/ N ,+

Acta Chem. Scand. 14 (1960) No. 6

Here




EMF. OF CONCENTRATION CELLS 1385

_ ddF,y _( 0 N+ )2' 2

T dN,+ dx aNA N,+

_ dAF,, (INs+\® 9 (16)
T d N,+ dx d N, + 0Q N,+

According to derivations (eqn. (8)) in the previous paper?! (compare
the present eqn. (26)), we have

o0x Vv,
(af@)NA+ =g W) (17)
d ty+

d N+

where V is the molar volume of the mixture and t’( No+) =
Introducing eqn. (17) into (16) we have:
dgrad AF ) . _d A4F .y ( 3 N+ )2 Yo a8)
( 0 AF d N, + x g  (Na+)

neglecting changes in ¥V with changes in composition, and introducing this
into eqn. (15) we obtain

oU VNA‘,-xI d AF,y \B( 0 Nat+ \?
_— 2 4"
—————aQ——2f8mt(NA+)(dNA+>( oz )dNA+ or
aty
N,+
a V It —
0Q 2 fs m2 t”(NA-i-) (grad AF,y)?d N+ (19)
N, +

I

The absolute dielectric constant & may be expressed by the absolute dielec-
tric constant of vacuum ¢, and the relative dielectric constant of the medium e;:

E =& " &

- 36

1 . 2
where &, = —— X 107® (coulomb?/joule - m) = 3.98 X 1072 (MFarada,y _)
cal . cm

Due to the small numerical value of ¢,, one may expect to find that the
change in electrostatic energy in the region of the concentration gradient is
negligible compared to the other free energy changes in the cell.

EFFECT OF THE CURRENT DENSITY

In eqn. (14) it is assumed that the current density is zero. However,
in & real measurement a small current will generally be drawn. The transport
of charge is therefore connected with a loss in electric energy as joule heat.
This energy loss will be symmetrical with respect to the sign of the current
density, and it will usually not disturb the E.M.F. measurement.
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The change in electrostatic energy will, however, have terms in addition

to the expression in eqn. (14) when current flows through the cell. According
to eqn. (9) the potential gradient is:

grad ¢ =m grad AF,y — R where R = ;1‘- (20)
and (grad ) = m? (grad AF,y)? — 2 EI m grad 4F,y + (RI)?

For constant I we have:

39@[—;—/‘3(2 Rngra,d A4F,y) dv] =Tq5d—Qf€ngrad4FAvdx

v
N,+
=Iqa—(—2ja-R AN ANy =0 (21)
At

As the integral contains only properties of the electrolyte, it is not changed
by the transport of a small charge.

The contribution by the term (RI)? to the change in electrostatic energy
for a given current density is equal to:

%(%fe(RI)’dv) —gIq e 2R(3Q) dz
v

0R d N,+
— 72, A
=I.gfeR 55— ( A )xdx (22)
NA+(H)
—_ T2 ’ Ny
=—BV[eR-By )t . d N
N,+
(4]
where eqn. (5) from the previous publication :
d N,+ =—Zt' d N,+
dQ g (Nat) "oz

has been used (compare the present eqn. (25)). & is considered constant.
One will generally find that this contribution to the measured E.M.F. is
negligible. In addition to this the current will cause polarization at the elec-
trodes.

EFFECT OF THE DIFFUSION PROCESS

It may finally be shown that the outer electrical work carried out by the
E.M.F. measurement is not influenced by the diffusion process, which is
proceeding during the time of the measurement.
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At the E.M.F. measurement a small charge 4Q is transferred through
the cell. This transfer is carried out over a short time period 4¢t. The electrical
current is in average 14 49

I= q 4t
The number of A% ions passing through an unit cross-section of the cell

at a distance = from one side of the cell, we denote by :7;+(z). The change in

content of AY in a volume ranging between two unit cross-sections at the
two distances # and x 4 dz is given by:

A dngt = (T3t —Taty o) At = —(—-{%L) de- 4t (23)
From eqns. (7) and (20) we have
Tyt =— (Lu Ly, g ) grad AF,y —xt,+-mgrad AF,y + t,+ -1 (24)
which will be abbreviated to
.7;+ = ——ﬂNﬁ-, grad N,+) +t,+ T

which combined with eqn. (23) gives
d N A+ dz 40

AdnA+_—f (NA+ gradNA+)dx At—*t(N +)

where f'(N,+, grad N,+) is the derivative of f (Na+, grad N, +) with res-

pect to x. As dn,+ = %a; - N,+, we obtain
A ‘NA (x — constant) V ¢ f’ (NA+’ grad NA+) M At
V 0 NA+

(N +) - AQ (25)
, 0x vV,
and Ax(NA_'_ — const.)= V’f (NA'F,gI‘a»d NA+) m 41— '6‘ ¢ (NA+) 'AQ (26)

The free energy of the electrolyte in the region of the concentration gra-
dient will thus change due to both the charge transfer and the diffusion pro-
cess. The total free energy change is given by:

1I
[ gdx ddaF
AFI—/ 7 d N, ANt

d AF AQ/ dAF v,

IX
=At-fq-f(NA+,gra,d Nat) g N, +) 4Nt (27)
I

where the last term is the only term considered in the previous publication 1.
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Thus the equations for the change in free energy by the simultaneous
diffusion process and charge transfer can be separated into two terms: one
containing time and one containing the amount of charge transferred and
no term containing both time and charge.

By a similar procedure using eqns. (26) and (14) one can show that
the equation for the change in electrostatic energy can be separated in the
same way.

It may thus be concluded that there is no interference between the diffusion
process and the cell reaction.

The derivation does not contain any assumptions regarding the bonds
between the three particles A*, B* and Y . The above equation may thus
be applied on a concentration cell having, e.g., HCl — H,0 mixtures as elect-
rolyte. This electrolyte can formally be describes as a mixture of the three
kinds of particles CI, OH™ and H*. The fact that the OH™ particles most
of the time are associated with H* does not affect the derivation of the above
equation.

An equation similar to eqn. (1) has been derived by Wagner 2 and later
in a modified way by Guggenheim 4. Wagner’s derivation is based on the
assumption that the different ions move independent of each other. The more
general derivation by Guggenheim is based on the electrochemical potential
of a single ion, and the application of the Onsager reciprocal relations to the
transfer of single ions. In the present derivation on the other hand un-
measureable quantities like the electrochemical potential of a single ion
have been avoided.

Guggenheims equation has been applied to systems of fused salts by
Laity 5. Laity %7 has also shown that the derivation by Guggenheim is valid
also in cases where the Nernst-Einstein equation connecting diffusion con-
stant and mobility does not hold, and he has extended the treatment of single
ion properties to give correlation between coefficients obtained from different
kinds of transport measurements.
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