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On Osmotic Pressure of Macromolecules
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Elementary considerations show that the osmotic pressure of a
golution containing non permeating molecules in & solvent consisting
of permeating molecules can be calculated as if the former constituted
a gas at the same temperature and concentration, provided that the
form and magnitude of and the forces between them be maintained.
The abridged van der Waals equation p(V—B) = RT is derived by
introducing in the equation V dp = n du (J. W. Gibbs, 1897) local
concentrations and local activity-coefficients.

It is shown anew that if 2b be the unavailable volume for a pair
of congruent hard molecules and N be the number of molecules in
the volume V, the available volume is ¥V —Nb as shown by van der
‘Waals 1899. A short history of this statement is given. It is emphasi-
zed that two different definitions of the unavailable volume 2b of the
pair exist. In the case of hard, spherical molecules they yield the
same result, 2b = 8wvm, where vm is the volume of one sphere. In all
other cases they yield different results. The two definitions are:

I. 2b is the volume inside which the centre of one molecule must
be if it be required that the one has points in common with the other
one, supposed fixed.

II. 2b is the volume inside which the center of one molecule can
not come without expenditure of work by the surroundings, the other
molecule supposed fixed.

Def. I is used by B. H. Zimm and A. Isihara. Def. II is a con-
sequence of the present author’s derivation of the abridged van der
Waals equation.

It is shown that for long rods Def. II agrees with experiments
on long chain-molecules. The condition for this agreement is bg > 8,
where b is in cm?®/g and g is the density in g/ecm3 of the solid solute
or is the reciprocal of its partial specific volume in the solution.

The discussion of experimental values yields suggestions regarding
the constitution of some chainlike macromolecules. The suggestions
seem to be confirmed by knowledge from other sources.

Two corrections mentioned in a paper by the author and the late
Dr. C. E. Jensen are withdrawn. The first one relates to the
difference in density between the inner and the outer liquid, the other
one to the difference in surface-tension between the same two liquids.

Both corrections relate to measurements with the “inverted
osmometer”. A third correction, subtraction of one third of the
diameter of the capillary from the height measured, is introduced.
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PART I. THEORY

In the following we shall understand by the osmotic pressure (0.P.) of a
solution of macromolecules that measured by means of a membrane which
is impermeable and only impermeable to macromolecules, say molecules of
molecular weights from some ten thousand and upwards.

It seems to be desirable to survey the basic ideas underlying our present
knowledge of O.P. because in the rapidly expanding literature more or less
controversial interpretations of the same phenomena have turned up so that
the reader sometimes finds himself caught in a maze. The following is an
attempt to illustrate different aspects of O.P. Not all of the author’s views
agree with views expressed by recent authors and his sincere hope is that this
presentation should induce readers to meditate themselves on the problems
involved.

The thermodynamic definition of osmotic pressure
and its realisation by experiments

Fortunately, there are no controversies regarding the thermodynamic
definition of O.P. It may be expressed as follows: The osmotic pressure is that
excess pressure which must be exerted on the inner liquid, the solution, in an
osmometer to prevent flow of the outer liquid, containing only permeating
solvent molecules, through the membrane. This is the same as to say, that at
equilibrium the chemical potentials of the permeating components of the
inner liquid must be equal on both sides of the membrane.

The aim of all direct methods of determination of the O.P. is to realize
this definition by experiment. As one example the reader may be referred to
the method described by Christiansen and Jensen ! in which the buoyancy of
an air column in a vertical capillary produces the excess pressure on the inner
liquid. If that pressure does not equal the O.P. there will be a flow of liquid
through the membrane. The rate of flow (positive outwards, negative inwards)
is measured by means of a horizontal microscope provided with an ocular
micrometer scale. Experiment shows, that it depends linearly on the height
of the air column, the resistance of the membrane against flow of the permeat-
ing liquid thus being independent of the direction of movement.

In exceptional cases the resistance proved to be greater for outward motions than for
inward ones. Such experiments were discarded. In most cases the effect could be elimi-
nated by removal and rinsing of the membrane. It is therefore probable that this valve
effect is due to & layer of macromolecules, partly blocking the outward, but not the
inward flow.

By means of a graph it is easy to find by interpolation the length of the
column which corresponds to zero flow and from this by calculation the O.P.

Even at the largest rates of flow the linear velocity of the permeating liquid
through the membrane (a collodion membrane) is extremely small, so small
that, if the outer liquid be a mixture, diffusion-equilibrium is extremely nearly
maintained in the displaced elements of the permeating liquid.
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This follows from the following rough estimate: An exceptionally high rate of move-
ment of the meniscus in the capillary is 20 divisions in the ocular micrometer in 10 min,
which corresponds to 0.4 mm?/10 min. The surface of the membrane is about 200 mm?
and consequently the linear velocity across the membrane is about 0.002 mm/10 min.
As now diffusion coefficients in gels like the water containing collodion membranes used
are known not to be much smaller than those in water, we arrive at the result mentioned.

TLe permeation is therefore very nearly reversible. From this follows,
that the liquid which permeates the membrane from the outside must have
very nearly the same composition as that which permeates from the inside.
In other words, the solvent, the permeating part, of the inner liquid is (very
nearly) identical in composition with that of the outer liquid, or we may say
that tlLe outer liquid is the solvent of the inner liquid even if the former is
a mixture.

Calculation of the osmotic pressure

The thermodynamic definition does not tell us whether or how the O.P,
may be calculated from thLe concentration of the (non permeating) solute.
Let us therefore consider the equilibrium situation more closely. It is a fact
that at equilibrium there is a pressure-difference between the inner and the
outer liquid. It is also a fact, that at equilibrium there is no flow of solvent
through the membrane. Furthermore the (permeating) solvent can only
contribute to the pressure difference by flowing through the membrane. Con-
sequently its contribution to the pressure difference must be zero at equili-
brium. Therefore we should get the same pressure difference if we removed
the solvent from both sides of the membrane, provided that we maintain not
only the temperature and the concentration of the solute molecules, but also
their form and magnitude and the forces between them. In other words we
may calculate the excess pressure at equilibrium, the osmotic pressure, as if
it were the pressure of a gas with the prescribed properties.

From this follows immediately, that the limiting law of van’t Hoff must
tend to be valid at such dilutions where the effects of the finite volume of
the solute molecules and of the forces between them have vanished. Whether
we may say, that the pressure difference at equilibrium be “due to” the
bombardment of the (non permeating) solute molecules against the semi-
permeable membrane remains a matter of taste, the essential thing being
that it can be calculated as described.

To treat the problem in more detail we shall use a method proposed by
Gibbs 2:

At constant temperature we have generally for a solution containing
k 4+ 1 components

Vdp:ndy+znid wi=1,2,...k) 1)

where V is the volume, and » and u are, respectively, the number of moles
and the chemical potential per mole of the non permeating solute and n; and
4 the corresponding quantities for the k permeating molecules. If now this
solution is contained in an osmometer surrounded by the semipermeable
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membrane and is in equilibrium with an outer liquid containing only the sol-
vent substances at constant temperature, pressure and composition all
dyy’s are zero and we get

Vdp = ndu @)

exactly the same equation which is valid for a one component system. It is
eqn (2) which we owe to Gibbs. The responsibility for the following must
remain with the present author.

Let us now assume as usual that

du = RT dn (cf) (3)

where c is the concentration of the solute and f its activity coefficient. Now,
if ¢ means the overall concentration it is evident that

dn/n = dcjc 4)

But (4) is also true if ¢ means a local concentration, which may be different
in different volume elements. This follows from the consideration that a small
relative increase in the number of molecules of solute in the volume V cannot
alter their distribution on the different volume elements.

It should be added that if we let ¢ mean the local concentration it must
be understood as the number of centers of gravity of solute molecules in a
certain volume-element divided by the volume of that element.

Let us now assume that the solution is so dilute that f equals the same
constant everywhere in the solution. Without loss of generality we may put
this constant equal to one. Combining (2), (3) and (4) we then get by integra-

tion
Vp = RTn (5)

because V at the small pressures in question is certainly independent of p.
We thus arrive at van’t Hoff’s limiting law, or the gas-law. But evidently this
is no proof of that law, because (3) has been chosen so as to lead in the limit
to (5). The real proof of (5) rests of course on the validity of Maxwell’s law
of equipartition.

Let us now proceed one step further. Using again (3) and (4) we get by
integration of (2)

Vp = RTn + RT f ndlnf (6)
f is assumed to be defined by
f = exp(g/RT) (7)

where g is a molar potential energy depending on the space coordinates of the
center of gravity of a solute molecule. In accordance with the Boltzmann
principle we shall assume that the activity a of the solute is constant every-
where inside the osmometer, <.e.

a = cf (@ constant) 8)
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‘We shall only treat the case in which the solute molecules at a distance do
not exert forces on each other, but that to force them nearer to each other,
when they are already in contact, requires expenditure by the surroundings
of an amount of work (per mole) which is several times as large as RT even
for very small displacements. In other words, we consider the molecules to be
hard bodies having well defined finite volumes. In that case g is either zero
(when the molecules are out of contact) or g/RT is so large that f to all intents
and purposes can be considered as infinitely large, the interval between these
two cases being so small that it can be neglected. Therefore we have everywhere
inside the osmometer

¢Inf =alnf/f =0 (9)

because if one factor is different from zero the other one is zero. Therefore
¢ dlnf + Inf dc = d(clnf) = 0 (10)
We have seen before that dc/c = dn/n so that (10) can also be written
ndlnf 4+ Infdn = 0 (11)
Asnow n = f cdV, (6) can be rewritten

f (p/RT — ¢(1 — Inf))dV = 0 (12)

If in (8) f equals one we have @ = ¢’, where ¢’ is the concentration in volume
elements where the solute molecules are ’free’’. Therefore

[ @/RT — (@1 — If)/)dV = o (13)

Now for those parts of the volume, where Inf is different from zero we get

¢ [((1 —Wp/fia¥ = o (14)

For those parts of the volume, where the centers of the solute molecules are
"free”’, 1.e. where f equals one

[ @/BT —e)dV =0 (15)

which means that p/RT = ¢'.
Now

n=fch=c'de/f (16)
The contributions to the latter integral evidently comes only from those

volume-elements in which f equals one. Denoting that part of the volume,
where f is different from one (the unavailable volume) by B, we evidently get

¢ = n/(V~—B) (17)
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o p(V—B) = nRT (18)

That this equation agrees exactly in form with van der Waals's equation for
the case wlLere intermolecular forces are absent is no wonder as it has been
derived from exactly tle same assumptions as the latter.

The unavailable volume

As emphasized by all authors on the subject there are two kinds of unavail-
able volumes. The first kind is due to the fact, that the centers of the solute
molecules cannot approach the inner surfaces of the osmometer beyond a
certain distance. Tle second kind arises from the circumstance that the
centers of two solute molecules cannot approach each other beyond a certain
distance. A rough estimate shows at once, that if the osmometer be not micro-
scopically small we may completely neglect the first kind. We shall now try
to survey tle situation concerning the unavailable volume of the second kind.

Statistics. Let us consider at first one pair of molecules identical in magni-
tude and shape, and let it be assumed that we have somehow succeeded in
determining the unavailable volume 2b for the pair. Let us further assume
that the volume V contains N single molecules of the solute. If we number
these and take out, e.g., number one it is evident that we may combine this
with the N—1 others to N—1 pairs with the total unavailable volume 2b(N—1).
However, as all the N—1 pairs contain molecule number one, only half of this
volume belongs to the N—1 second partners, those with the numbers 2,3.....N.
Consequently we must ascribe to each of these partners the part b of the
unavailable volume. If furthermore we ascribe the same part b to molecule
number one, this paired with any one of the other molecules will form a pair
with the unavailable volume 2b as it should. It follows from this argument
that the space available to the center of molecule number one or to any other
of the N molecules is V—(N—1)b—b = V—Nb. Thus Nb equals B, the
unavailable volume introduced before. B evidently means the same whether
we let b mean the unavailable volume for one molecule and N the number of
molecules or we let b mean the unavailable volume for one mole and replace
N by n, meaning the number of moles. Using the latter convention (18) can
be rewritten in the form

1—bc = RTc/p (19)

where ¢ = n/V is the overall molar concentration of solute molecules. We
may also let ¢ mean the concentration in g/litre in which case (19) becomes

M(1—bec)/RT = c/p (20)

where M is the ﬁlolecular weight of the solute. In that case b becomes the
unavailable volume of the solute in litre/g.

The expression V—Nb for the available volume has a rather complicated history.
J. D. van der Waals has it in the second edition of his book: Die Continuitit des Gasfor-
migen und Fliissigen Zustandes (1899) I, p. 45. His argument, in which he corrects an
error committed by R. Clausius, is different from that given above.
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L. Boltzmann in his: Vorlesungen iiber Gastheorie, 1st Ed. 1898, reprinted 1912, part
II, p. 7, has (ournotation) ¥V —2(N —1) b for the same quantity. In his argument, which is
similar to ours, he counts, however, the contribution to the unavailable volume from what
we have denoted as molecule number one N —1 times in stead of only once. Then in his
last work (with J. Nabl) in Encyclopddie der Mathematischen Wissenschaften V (1907)
p. 551, Boltzmann quotes, without remarks, from the above mentioned book of van der
Waals the latter’s value V —Nb. It seems ev1dent therefore, that Bolzmann accepted this
value before he died.

Finally, in his Dynamical Theory of Gases, 2nd Ed. (1916) p. 138, J. H. Jeans quotes
Boltzmann’s value from 1898, V—2(N—1)b without mentioning the error.

We shall therefore stick to the value for the unavailable volume B = Nb
and not use B = 2(N—1)b. It must be added that the expression an unavail-
able volume of the second kind” has only a meaning if N is at least two.

Geometry. The magnitude of the unavailable volume, depends on the
geometrical form of the solute molecules. Van der Waals and his first successors
calculated 2b, the unavailable volume for a pair of molecules, only for the case
of hard spherical bodies which is by far the easiest one to treat. It is easy to
see that the volume around a sphere A inside which the centre of another
sphere B cannot come without the expenditure of work is a sphere whose
radius is d, where d is the diameter of one of the spheres. In other words, the
unavailable volume 2b for the pair is eight times v,, where v, is the volume of
one of the molecules forming the pair if they are both spherical. For the follow-
ing it is of interest to note that in this case and only in this case two different
definitions of the unavailable volume 2b lead to the same result, viz.

Def. I: 2b is the volume inside which the centre of molecule B must be if
molecule A be fixed and it be required, that they shall have points in common.

Def. I1: 2b is the volume inside which the centre of one molecule cannot
come if the other one be fixed, unless work is performed by the surroundings.

For non spherical molecules definitions I and II lead to different results,
the more so the more the form of the molecules deviate from a sphere. Def. I1
evidently is the one required by our derivation of the abridged van der Waals
equation.

As examples of approximately spherical molecules certain globular macro-
molecules, e.g. certain proteins might be mentioned, but we shall focus our
attention on a quite different type, molecules of the pearl-string type. Most
or at least many of them are not at all stiff. Ifthey were they might reasonably
be considered as cylindrical rods, a case which seems next to the sphere in
simplicity. However they must often be expected to perform not only inter-
molecular Brownian motions but also intramolecular motions of a similar
irregular kind, resulting in incessant changes in “curliness’’ and end to end
length. To take this accurately into account in an attempt to calculate the
unavailable volume for a pair of such molecules seems nearly hopeless. The
only problem one may reasonably expect to be able to solve is the tremendously
simplified problem of determining 2b for a pair of stiff circular cylinders with
given height and length. Isihara ® has suggested that for the solution of the
corresponding problem for flexible molecules one might use information
concerning average dimensions of such molecules obtained by means of light-
scattering experiments. To the present author this seems doubtful because
it seems to him that the lengths measured by optical methods may be quite
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different from those which are decisive for the magnitude of the unavailable
volumes. Actually, just because of the flexibility of the pearl-string model
one would expect the decisive length for this to be the length of the string,
while the average lengths measured by optical methods may be much shorter.
Anyhow, we may not commit gross errors by replacing the pearl string by the
same in its stretched form and then replace this by a cylinder of the appro-
priate dimensions, diameter d and height h.

The unavailable volume for a pair of solid cylinders

B. H. Zimm ¢ and A. Isihara 5% have solved, the former approximately,
the latter exactly, the following problem: Given two congruent cylinders, A
and B, A being fixed in space and B movable. Find the volume inside which B
must move if it be required that the common volume of A and B does not vanish.
Zimm and Isihara consider the volume so defined to be the unavailable volume
2b for a pair of cylinders, in other words they use Def. I. Isihara’s result 8 is

2b/vm = m + 3 + n d/2h 4 2h/d (21)

Now b can be determined by measurements of the osmotic pressure p at
several concentrations c. We then plot ¢/p against ¢. According to (20) the
graph obtained should be a straight line and seems to be so when only reliable
experiments are taken into account. For details of the experiments and
evaluation of the sources of error in osmotic experiments the reader is referred
to Part IT of this paper. From the intercept of the line with the axis of ordinates
we may calculate the molecular weight and from its slope we get b in cm3/g if
cis in g/em3. Furthermore v, might be taken as the partial specific volume
in cm3/g in the solvent in question or failing that, as the reciprocal density(g) of
the solid substance. However, measured in this way v,, may very probably be low
because evidently the solute molecule may be covered with a sheath of solvent
or it may be wound up in a helix’’ whose effective volume at collisions may
be several times larger than that of the densely packed molecules. Values of bp
therefore represent an upper limit to the value of b/v,. The former values
usually lie in the range from about ten to less than one hundred. On the other
hand the number of pearls” on the ”’string’’ can be estimated from our know-
ledge of the chemical composition of the substance in question and its mole-
cular weight. This number cannot be very different from the ratio A/d. A low
estimate of this ratio is 100. From (21) it is seen that for this value of A/d,
b/v,, becomes 100, and by actual calculations in the particular examples it is
found to be much greater. This disagreement between values of bp determined
experimentally and b/v,, predicted by the calculation of Isihara 5.8 is so large,
that serious doubt arises whether the definition (I) of the unavailable volume
be the right one. What can be said at the present stage is that it is certainly
different from Def. IT adopted by the present author. This definition may be
repeated here as follows: Let cylinder A be fixed and B be movable. The volume
unavailable to B is then that volume inside which the center of B cannot be
brought unless work is performed on the system. :
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Fig. 1. Fig. 2.

To illustrate the difference between the two definitions let us proceed in
the following manner: We replace cylinder A by one of the same height but
with diameter 2d and replace simultaneously B by its axis of lenght &. Further-
more we consider the particular case that the axes of A and B are perpendicular
to each other. The projection on a plane perpendicular to the axis of A is shown
in Fig. 1. In this plane we may evidently speak of an unavailable area instead
of an unavailable volume. Now according to Def. I the middle point of B
certainly belongs to the unavailable area if the situation is as illustrated.
According to Def. II, however, the same point does not belong to the unavail-
able area because we may shorten the radius vector » from the center of A
to the middle point of B without performing work. Of course the line B will
then slide or roll on the circle A but this does not require work as no forces
resists a motion of that kind. But the radius vector cannot be decreased to a
value less than d, the radius of the circle, unless work is performed on the
system. Therefore, according to Def. II, the area unavailable to the centre
of B is the area of circle A, which is certainly less than the unavailable area
defined according to Def. I.

In this argument we have neglected the fact that both A and B are endowed
with kinetic energy, translatory and rotatory. Strictly speaking we should
therefore consider the probability of finding the two centers in between di-
stances r and r + dr from each other. This probability depends partly on the
kinetic and partly on the potential energy, both corresponding to the distance
r. We know, however, from general theory that the average kinetic energy
at a given temperature does not depend on r. Consequently our result must
remain the same as that obtained under the assumption that the two cylinders
are at rest. It seems therefore that both experimental results and theoretical
considerations indicate that Def. IT and not Def. I. must be the right one.

Calculation of the unavailable volume for a pair of
cylindrical molecules.

The unavailable volume evidently depends on the orientation in space of
the axes of the cylinders. Let the axis of A be parallel to the z-axis in a system
of rectangular space coordinates as in Fig. 2 and let its centre be placed in the
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origin. We want now to determine the volume which is unavailable to the
centre of B. On account of the cylindrical shape of A and B the unavailable
area is for all orientations of the axis of B equal to # d®. The unavailable
length however depends on the orientation of the B-axis. If this be parallel
to the z-axis the length is evidently 2k, beginning at * = —h and ending at
z = -h. The vectors indicating the possible directions of the B-axis must
always be positive and must therefore lie inside the corner limited by the three
positive half-axes of coordinates. Denoting geographical longitude by @ and
geographical latitude by ¢, the surface element on a sphere with radius unity
is dS = (cos @ d@) (d¢). As we shall assume that all orientations (inside the
octant) are equally probable the element of probability dw is AdS. As the
vector in question (dw) must have its endpoint somewhere inside the equila-
teral spherical triangle whose sides are 7/2 we have

fdw:l:Ade=A4n/8 (22)
Consequently
dw = 2cosp dp dO /= (23)

The components of the unavailable length multiplied by the element of pro-
bability thus becomes for the axes indicated

(x): 4hcos?p de cos@ dO/n
 (y): 2hcos®p do sin@ dO/n (24)
(2): 2hsing cosp dp d@/n

where it be remembered that when the B-axis is parallel to either the y or
to the z-axis the unavailable length is h, the end correction being already
included in the contribution from the (z) position.

Performing now all the integrations from zero to m/2 we get as contributions
to the average length unavailable to the center of B

@): b (y): B/2; (2): R[2.

Thus the volume unavailable to the center of B, when A is fixed becomes
2h - md?®. To get the volume unavailable to the center of A when B is fixed
we must fix the axis of B perpendicularly to the z-axis. It is immaterial
whether we choose the y- or the z-axis. Let us choose the latter and let further-
more the fixed B-axis extend from the origin along the two branches of the
z-axis. The calculation need not be repeated as we evidently get the same
result as before. We cannot, however, simply add the two results to get 2b.
Each of the two volumes 2rnhd? represents the volume of a cylinder with
height 2k and radius d, but their axes intersect at right angles and divide each
other in the ratio one to one. In the case of cylindrical bodies this ratio is of
course immaterial so long as the two cylinders intersect but if the bodies were
e.g., prolate ellipsoids this would not be so. Now the total volume of two
cylinders intersecting each other as described is equal to 2b and we get

2b = 4mhd?(1 —4d/3nh) if d < h (25)
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For d>h, that is if the molecules are coin-shaped, 2b is represented by two
’coins”’ each of radius d and thickness 2/ intersecting each other symmetrically
at right angles. The volume of such a body is

2b = 4dmhd? — 16(d® — (d2 — h2)32)/3 (26)
For small values of h/d this converges against
2b = 4dnhd? — 8dh? = dmhd?(1—2h/nd) (27)
Thus for very long ’rods’’ and for very thin ’coins” we get
2b = 160, (28)
while for spherical molecules
2 = 8v, (29)

PART II. COMPARISON WITH EXPERIMENTS

In the last two or three decades an immense number of determinations of
O.P. particularly such of the filament or the rod type have been carried out. It
would take too much time and space to review them all and the following
examples are therefore chosen more or less at random. Peculiarly enough many
of the results quoted were obtained by the time-consuming and not always
quite reliable static method, although the principle of the dynamic method
had been known for many years. Even when the present author at the Carls-
berg Laboratory constructed an osmometer 7 according to the latter, the
principle had been used more than twenty years before. 8°

The apparatus constructed by Fuoss and Mead 1° (1943) has since been
used by several authors in U.S.A. It works according to the static principle,
but with the important improvement, that the osmotic equlibrium is reached
in a relatively short time and from both sides.

Some years ago the late Dr. Jensen and the present author ! constructed,
as mentioned before, a new type of a dynamic osmometer, an inverted osmo-
meter, so called because the membrane is at the upper end of the observation
capillary. This has since been used by different persons for different purposes
and on a number of different solutes, but hitherto only with water or aqueous
solutions as solvents. It is believed to have several advantages as compared
to older models, particularly also to the Carlsberg model described by Seren-
sen 7 in 1917. First of all its volume is only about 400 mm3, its active surface
being about 200 mm?2. The Carlsberg model contained about 15 cm?, including
about 4 cm?® dead space, and had an active surface of about 30 cm2 The
diameters of the cylindrical parts were, respectively, about 7 and about 14 mm.
In the new model therefore in which there is practically no dead space the time
necessary to reach diffusion equilibrium has been reduced by a factor of about
four. Also the mechanical properties have been improved: On changing the
hydrostatic pressure on the inner liquid the strain in the membrane is changed.
This would be harmless if there were no elastic aftereffects in the collodion
membranes used. Serensen ? showed that actually such effects seem to be
present, but he showed also that the errors they produce were insignificant.
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It can be estimated from experiments quoted in detail by Serensen 7, that his
results are reliable to within one in about three hundred. In the new model
the small membranes are about as thick as those in the Carlsberg model which
are much larger and the resulting strains are therefore smaller. Accordingly
elastic after-effects were not observed in experiments with the new model.
To avoid these effects some recent osmometers 1 have a plane membrane
supported by one or two perforated discs. This, however, has the drawback
that the active surface becomes much reduced, or the volume strongly increas-
ed, because evidently, even if the whole surface of the disc were active it
would be, for the same overall dimensions of the apparatus, less by a factor
about two than the test tube shaped membrane.

Experience with the new apparatus has shown that osmotic pressure may
be determined with an accuracy better than 0.1 mm water pressure for pressures
below 5 mm, the range of the ocular micrometer. Above 5§ mm the accuracy
is limited to 0.1 mm, the heights being measured by means of a millimeter
scale with Vernier on the vertical stem of the microscope. In any case the
accuracy obtained can be read from the graph connecting the rate of movement
of the air column with its height.

In most other, particularly older apparatuses, including those of both
types, static and dynamic, the accuracy seems not to be much better than 1 mm,
and sometimes to be worse. Furthermore, at some measurements performed
according to the static method and with one-sided approach to equilibrium,
complete equilibrium may not always be reached. For these reasons many
measurements of O.P. lower than about 1073 atm, reported in the literature,
may be off by 10 %, or more.

Some earlier authors have used the abridged van der Waals equation to
represent their results, ¢.e. they have plotted c¢/p against ¢, where c usually is
the concentration in g/litre and p the pressure in some arbitrary unit. When
points relating to the lowest pressures (less than 107® atm) are neglected
reasonably straight lines are usually obtained. More recent authors often
calculate and plot p/c against ¢, thereby obtaining curves with an upward bend.
Some such experiments have been recalculated by the present author who,
again omitting low and therefore doubtful pressures, got nearly straight lines.

Fortunately earlier authors gave their numerical results in tables. More
recent authors seem to have abandoned this useful habit and give their results
in graphs, from which it is difficult to read their numerical results accurately
enough for recalculations. In all the following examples the present author
has performed a recalculation and redrawn the corresponding graphs, thereby
obtaining the values indicated for the molecular weight, M, and the values
of b in em3/g.

According to theory b = 8v,, if the molecules are (nearly) cylindrical. If
v,, were the specific volume of the substance in question we should expect to get
bo = 8 if g be the density in g/cm?® of the substance in question. In stead of
that one finds in most cases that bp is two to five or even ten times as large
as that. The explanation is evident: v, is the volume of a cylinder, which
cannot penetrate a similar one. If now the principal chain in the molecule
has many short branches, or if it be wound up in a helix, two such molecules
can only penetrate each other to a distance which may be two or three times
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that calculated from the densest possible packing of the constituents, as in the
corresponding solid. This means that the factor in question may easily be
four or even nine. It should of course be more correct to use the partial specific
volume of the solute in the solvent in question instead of the reciprocal density
of the solid substance, but even the volume measured that way may easily
be less than v,, because the small solvent molecules can accomodate themselves
in the structure of the solute macromolecules while other solute molecules can
not. Therefore, the only thing we can state with some certainty is that the
product bp must be equal to or greater than eight, provided that attractions
between the rod-molecules can be neglected.

Example 1
Experiments by Kroepelin and Brumshagen 1. Recalculated by J. A. Chr.

Solute: Caoutchouk. Solvent: Benzene.
Temp. M e b be
11°C 210 000 0.91 g/cm? about 40 cmd®/g  about 36
40°C 210 000 0.91 » about 70 » about 62

Remarks: As mentioned by the authors themselves, the b values are rather
inaccurate, but it seems certain that b at 40°C is essentially larger than b at
11°C.

As an explanation it may be suggested that different rubber-molecules be
curled into helixes of different diameters, those with the larger diameters
having the greater energy-contents.

Example 2

Experiments by Schultz 12. Recalculated by J. A. Chr.
Solute: Cellulose-nitrate. Solvent: Acetone.
Temp. 27°C. Density, o : 1.35 g/cm?

Specimen M b be
N66 about 54 700 about 25 cm?d/g about 34
N65 about 36 700 about 21 » about 28

Remarks: Polysaccharide chains are probably straight, but the nitro-groups
substituted for hydrogen in the hydroxy-groups may act as short side-chains.

Example 3

Experiments by Schultz 2. Recalculated by J. A. Chr.
Solute: Polystyrene. Solvent: Toluene.
Temp. 27°C. Density, o : 1.06 g/cm?

Specimen M b be
P.S. 20° about 141 000 about 30 cmd/g about 32
P.S. 1356° » 160000 » 29 » 31
P.S. 200° » 57 500 » 23 » » 24
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Remark: The aromatic side-chains must increase the effective diameter
of the principal chain but may prevent its curling up.

Example 4

Experiments by Schultz 2. Recalculated by J. A. Chr.
Solute: Polyethylene oxide. Solvent: Water.
Temp. 27°C. Density, o : 1.12 g/cm3.

Specimen M b be
IT about 64 400 about 54 cmd/g about 60
III » 26 600 » 26 » » 29
Iv » 17700 » 26 » » 29

Remark: In the book by H. Staudinger, Die hochpolymeren organischen
Verbindungen (1932) p. 293, one author, H. Lohmann, gives arguments for
zigzag formulae of the polyethylene oxides illustrated in a plane. Thisillustra-
tion may very naturally be taken as the projection formula of a helix.

Example 5

Experiments by Jensen and Marcker 3. Recalculated by J. A. Chr.
Solute: Dextrane, fractionated. Solvent: 0.2 M KCl in Water.
Temp. 20°C. Density taken to be 1.588 g/cm3 (sucrose), (starch about 1.5)

Specimen M b bo
Dextrane about 140 000 4.93 cmd/g 7.84

Remarks: Unfortunately no determinations of the density of the solid or
of its specific volume in the solution were performed. Assuming that different
polysaccharides have the same specific weights the value of g for sucrose has
been taken. The value for starch, 1.5, is probably low, because it refers to
granules of native starch which may include some air.

It is said in the paper 13 that the (commercial) specimen was very polydis-
perse and had to be freed from the low molecular fraction by dissolution and
reprecipitation, but even so it became certainly not monodisperse. As, by
experience, unavailable volumes are usually independent of the molecular
weights for rod-molecules derived from the same structural unit, the degree
of polymerisation is probably irrelevant for the value of bg.

TLe deviation of bp from 8 is certainly less than the probable error. The
result therefore suggests that the polysaccharide chain be not coiled up. Be-
cause of the cyclic constitution of the units this seems intrinsically probable.

Addendum to Example 5, and amendments to a paper
on the inverted osmometer

In Table 2 in the paper by Jensen and Marcker 13 there is one misprint
(19.40 for 10.94) and one line is missing. The complete table shall therefore
be reprinted below. Furthermore, the heights of the air-column had not been
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corrected for curvature at its ends. This has now been done by subtracting
one third of the diameter of the capillary (0.07 cm) from the heights (p) in the
table. TkLe corrected values of ¢/p are under the Leading (¢/p). Values of ¢/p
have been calculated from the formula ¢/p = 4—Abc with A = 5.68, 4b =
0.0280. TlLey are under the heading (¢/p)eic. Finally, values of the difference
(¢/p)—(c/P)cate are in the last column. ’

Table 2 by Jensen and Marcker 3, revised and enlarged by J. A. Chr.

c P clp (c/p) (¢/p)cale
mg/ml cm
5.68

5.19 1.05 4.94 5.05 5.54 —0.49
10.94 2.07 5.31 5.37 5.37 0.00
19.40 3.90 4.98 5.01 5.14 —0.13
31.51 6.45 4.89 4.91 4.83 +0.08
40.00 8.80 4.55 4.56 4.56 0.00

The deviations in the last column are such that if caused by errors in the
determination of p three of them would correspond to errors of about 1 mm.
Such errors are, however, nearly impossible and it is therefore much more
probable that they have arisen from lack of homogeneity in the fraction in-
vestigated. It should be recalled in this connection, that it was certainly
not monodisperse. If this be the cause of the deviations it is quite natural
that it is the determination in which the smallest amount of substance (5 mg)
was weighed in, which shows the largest deviation.

Amendments to the paper by Christiansen and
Jensen!

On p. 1252 the authors mention three corrections which should be applied:

1. A correction for the finite density of air (saturated with water vapour
at 20°C). This correction varies with the varying total pressure in the appa-
ratus, but it is so small that its value at one atmosphere, 0.0011 g/cm?, can
safely be used in all cases. Therefore the significant figures in the value of ¢
on p. 1254, 246.8, should be replaced by 247.1.

2. A correction for the difference in density between the outer and the
inner liquids. This correction is at any rate very small, and if complete equili-
brium in the gravity-field has been established, not only across the membrane
but also in the column of inner liquid extending from the upper end of the
capillary to the upper end of the air-column, only the density of the outer
liquid is relevant. Thisitem be therefore withdrawn.

3. A correction for the difference in surface-tension between the solution
at the upper end of the air-column and the solvent at the lower end. This
be also withdrawn for the following reason: Water adheres strongly to glass.
We must therefore assume that the cylindrical part of the air-column is
surrounded by a liquid film, which, as known from the works of M. Vollmer,
most probably is easily movable along the glass wall. The capillary forces at
the ends of this cylindrical film must tend to drag it in opposite directions,
and at osmotic equilibrium the forces must counterbalance each other exactly.
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Example 6

Experiments by Jensen and Marcker 13. Recalculated by J. A. Chr.
Solute: Potassium hyaluronate. Solvent: 0.2 M KCl in water.
Temp. 20°C. Density, : 1.16 g/cm?® (spec. vol. det. by Jensen)

Specimen M b be
Prep. I 122 000 35.8 cm?d/g 41.6
Prep. II 144 000 358 » 41.6
Prep. IIT 144 000 356.8 » 41.6
Prep. IV 1 066 000 43.0 » 50.0

Remarks: At a former occasion Jensen ¢ determined the specific volume
of another specimen of potassium hyaluronate by pycnometric determinations
in 0.2 M KCl in water. Result: 0.86 cm®/g. It is evident from the table that b
depends only slightly on the molecular weight of the preparation. It is also
evident that the product bp is 5—6 times larger for the hyaluronate than for
dextran, although the former is a derivative of a polysaccharide and the latter
is a polysaccharide. This may partly be due to the circumstance that the
former contains carboxyl-groups as side-chains, but the effect of this may be
masked by the property of its being a polyelectrolyte. In a forthcoming paper,
Graae and Marcker point out that the large unavailable volume of the hyalu-
ronate may be due to electrical forces from the ionic atmosphere surrounding
the negatively charged ’backbone’ of the polyion. The effective diameter of
the cylinder may be expected to be not very different from the Debyelength
1/« and b should therefore increase with decreasing ionic strength of the sol-
vent. Graae and Marcker have found experimental evidence in the literature
that this be true for another chain-like polyelectrolyte.

Addendum to Example 6

The values for ¢/p in Table 3 of the paper in question have not been correc-
ted for curvature at the ends of the air column. Table 3 has therefore been
recalculated by the present author (see below) and the values for M and b in
the table above are the results of this recalculation. It should be noted that
in the columns marked p in the original table 3 the number of significant figures
should have been increased by one in some cases. The figures in the column
marked c¢/p, however, have in all cases been calculated from the orginal data
and have sufficient numbers of significant figures. The recalculation, therefore,
is based on the figures in that column. One misprint in the original p-column,
1.00 in stead of 1.06, has been found. As in the addendum to Example 5 ¢/p
is the original value, (¢/p) the corrected one and (¢/p)earc that calculated accord-
ing to the formula p/c = A—Abc. The differences (exp) — (calc) are in the
last column.
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Table 3 by Jensen and Marcker 13, revised and enlarged by J. A. Chr.
Prep. I. 4 = 4.92; b = 0.0358 litre/g.

c P clp (c/p) (¢/p)eate
mg/ml cm
4.92
16.00 7.89 2.03 2.03 2.10 —0.07
13.00 4.91 2.65 2.66 2.63 +0.03
11.00 3.70 2.97 2.99 2.98 +0.01
7.00 1.85 3.78 383 3.69 +0.14
5.00 1.292 3.87 3.94 4.04 —0.10

Prep. II. 4 = 5.85; b = 0.0358 litre/g.

0 ) 5.85

16.00 6.50 2.46 2.47 2.50 —0.03
13.00 4.19 3.10 3.12 3.13 —0.01
11.18 3.21 3.49 3.52 3.51 +0.01
5.00 1.059 4.72 4.83 4.80 +0.03

Prep. III. A = 5.85; b = 0.0358 litre/g.

0 5.85

7.61 1.85 4,06 4,12 4.27 —0.15
5.10 1.10 4.64 4.74 4.78 —0.04
3.53 0.710 4,97 5.14 5.11 +0.03
2.56 0.490 5.22 5.49 5.31 +0.18

Prep. IV. A = 43.0; b = 0.0432 litre/g.

0 43.0
19.99 3.49 5.72 5.76 5.80 —0.04
16.00 1.20 13.33 13.59 13.22 +0.37
13.78 0.85 16.21 16.68 17.38 —0.70
10.21 0.450 22.69 23.90 23.98 —0.08
7.48 0.280 26.71 29.15 29.10 +0.05

It should be noted how surprisingly accurately the van der Waals abridged
formula holds, even in cases where the available volume is less than half of the
total volume, in the case of Prep. IV even less than one seventh.

It should be added, that in recalculating the tables for Prepns. I—III the
present author has taken advantage of the fact found by Jensen and Marcker
that the b-values are, inside the experimental errors, the same for these prepara-
tions.

It is seen that in all the examples quoted bp is equal to or greater than
eight. On the other hand it is less than one hundred. Now according to the
formula of Zimm 4 and Isihara 38 the lower limit for the product should be,
for long molecules, the height of the cylinder divided by its diameter. The
lowest value of this ratio occurring among the examples is probably the one
in Example 4, specimen IV, and even here it can hardly be below 150. In the
other examples rough estimates yields much larger values for the same ratio.
This confirms the suggestion that Def. IT and not Def. I be the right one to use.
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