with the flame spectrophotometric analyses for sodium, and Dr Torsten Lundström, Department of Chemistry, University of Uppsala, who made the piezo-electric tests. This work has been sponsored in part by the Air Force Office of Scientific Research of the ARDC, USAF, through its European Office on contract number AP 61(052)—162. The English text has been revised by Mr Donald Gillam.

Received March 28, 1960.

On the Crystal Structures of Some Basic Aluminium Salts

GEORG JOHANSSON

Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A., Department of Inorganic Chemistry, The Royal Institute of Technology, Stockholm 70, Sweden

An aluminium chloride solution can be hydrolyzed by sodium hydroxide and sodium selenite is added, tetrahedral crystals can be obtained, which, when dried in air, have the composition Na₃O·13Al₂O₃·8SeO₃·zH₂O (with z in this case equal to about 74, cf. Ref. *) The crystals are cubic, with a₀ = 18.0 Å and with two formula weights in the unit cell. The space group is T_d^3—F43m. Three-dimensional intensity data have been collected with CuKα radiation. The structure has been solved from the three-dimensional Patterson function and refined by means of three-dimensional Fourier maps *. At the present stage of the refinement the reliability index, R, is 0.11 for the 245 observed reflections, but the positions of the sodium atoms are still uncertain. The parameters are:

* All calculations were carried out on a Burroughs 205 computer at the California Institute of Technology.

The structure is built up from discrete aluminium-oxygen groups (Fig. 1) each containing 12 AIO₆ octahedra sharing O₁—O₁ and O₂—O₂ edges, and with an additional aluminium atom in the center of a tetrahedron of O₂ atoms. These large groups, which have the composition Al₂O₆, are not directly connected but are joined to the selenate groups by means of hydrogen bonds between O₆ of an aluminium-oxygen group and O₆ of a SeO₄ group. If the hydrogen atoms are located from the positions of hydrogen bonds and from Pauling’s rule for the sum of the electrostatic bond strengths, the formula for the discrete aluminium-oxygen complexes seems to be \([\text{Al}_6\text{O}_6(\text{OH})_2(\text{H}_2\text{O})_2]^+\). The formula for the basic salt now being considered should then be written Na[Al₂O₆(OH)₄(\text{H}_2\text{O})_2](\text{SeO}_4)·13\text{H}_2\text{O}. It is interesting to note that both the rings of six AIO₆ octahedra, that can be distinguished in the hydrgarillite structure, and the groups of three octahedra which, linked together by common edges and corners, build up the dioxyphosphate boehmite structures, can also be seen in the \([\text{Al}_6\text{O}_6(\text{OH})_2(\text{H}_2\text{O})_2]^+\)-groups (Fig. 1).

If the aluminium chloride solution is hydrolyzed with ammonia and ammonium sulfate is added to a high concentration, tetrahedral crystals of another kind can be obtained. They were first described by Bassett and Goodwin 4 who gave them the formula \(\text{6(NH}_3\text{)}_2\text{SO}_4\cdot11\text{Al}_2\text{O}_3\cdot6\text{SO}_3\cdot2\text{H}_2\text{O}\) \((x = \text{ca 72})\). The crystals are tetragonal with Laue symmetry \(4/m\) and have the same kind of reflections systematically absent as the basic selenate. If a face centered unit cell is chosen the cell dimensions are \(a = b = 19.8\ \text{\AA}\) and \(c = 19.6\ \text{\AA}\) as determined from precession and Weissenberg photographs. The density is \(1.86\ \text{g/cm}^3\). According to these results and the analysis data given by Bassett and Goodwin 4 the following number of atoms should be present in the unit cell: Al: 52 (51.4), S: 28 (27.9), NH₃⁺: 28 (28.0). The formula may therefore be written \((\text{NH}_4)\text{[Al}_2\text{O}_6(\text{OH})_4(\text{H}_2\text{O})_2]\text{(SO}_4)_2\cdot x\text{H}_2\text{O}\). The similarities to the basic selenate seem to be an indication that the same kind of discrete aluminium-oxygen groups are present in both compounds.

A monodetic basic aluminium sulfate forming plate-like crystals also seems to be built up from the same kind of aluminium-oxygen complexes. It can be obtained from dilute hydrolyzed aluminum chloride solutions by the addition of sodium sulfate (for example from solutions that are about 0.01 M in \(\text{Al}^{3+}\) and 0.03 M in \(\text{SO}_4^{2-}\)). The composition is \(13\text{Al}_2\text{O}_3\cdot8\text{SO}_3\cdot x\text{H}_2\text{O}\) \((x = \text{ca 79})\) and the crystals seem to be identical with the compound \(13\text{Al}_2\text{O}_3\cdot8\text{SO}_3\cdot x\text{H}_2\text{O}\) described by Bassett and Goodwin 4. The space group is \(\text{C}_{2h}^+\) with the intensity distribution favouring the centrosymmetric \(\text{C}_{2h}^+\). The unit cell dimensions are: \(a = 20.2\ \text{\AA}, b = 11.5\ \text{\AA}, c = 25.0\ \text{\AA}, \beta = 103^\circ\) (symmetry \(P2/a\) or \(P\alpha\)) but the crystals can also occur in a form with a unit cell of only half this size, with \(a = 14.2\ \text{\AA}, b = 11.5\ \text{\AA}, c = 17.7\ \text{\AA}, \beta = 102.3^\circ\) (symmetry \(P2/m\) or \(P\alpha\)). This, however, can spontaneously switch over to the larger unit cell without any noticeable changes in the appearance of the crystal or of the sharpness of the spots on the Weissenberg photographs. Three-dimensional intensity data have been collected with CuKα radiation from the crystals containing the smaller unit cell. About 3 200 reflections were observed. The three-dimensional Patterson function could be interpreted by assuming two aluminium-oxygen com-

plexes similar to those in the basic selenate to be present in the unit cell according to the symmetry \(P2_1/n \). Three dimensional Fourier maps seem to confirm this assumption and also reveal the positions of four of the sulfate groups in a fourfold position; the remaining two sulfate groups, however, are apparently statistically distributed over two positions close to a center of symmetry in the unit cell. This result in connection with the fact that for some of the zonal data, for example, the \(k \overline{3} l \)-reflections, the intensity distribution is closer to one expected for a noncentrosymmetric space group seems to indicate the presence of small deviations from a centrosymmetric arrangement. The space group should then be \(Pn \) rather than \(P2_1/n \). The refinement of the structure will be continued according to this space group.

The reliability index, \(R \), assuming the space group to be \(P2_1/n \), is at the present stage of the refinement 0.24 for all observed reflections. The parameters for the aluminium atoms in the aluminium-oxygen complexes are:

<table>
<thead>
<tr>
<th>Atom</th>
<th>Parameters</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 (\text{Al}_1)</td>
<td>0.338</td>
<td>0.980</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>4 (\text{Al}_2)</td>
<td>0.482</td>
<td>0.796</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>4 (\text{Al}_3)</td>
<td>0.137</td>
<td>0.795</td>
<td>0.390</td>
<td></td>
</tr>
<tr>
<td>4 (\text{Al}_4)</td>
<td>0.307</td>
<td>0.437</td>
<td>0.329</td>
<td></td>
</tr>
<tr>
<td>4 (\text{Al}_5)</td>
<td>0.276</td>
<td>0.620</td>
<td>0.437</td>
<td></td>
</tr>
<tr>
<td>4 (\text{Al}_6)</td>
<td>0.453</td>
<td>0.619</td>
<td>0.375</td>
<td></td>
</tr>
<tr>
<td>2 (\text{Al}_7)</td>
<td>1/4</td>
<td>0.705</td>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

Followships from the Corning Glass Works Foundation and from the Sweden-America Foundation in support of part of this work is gratefully acknowledged.

Received March 28, 1960.

On Observable Discontinuities and Coherence in the Kinetics of Enzymically Reacting Systems. A Misprint

J. A. CHRISTIANSEN

Sundvænget 9, Hellerup, Denmark

The following misprint in my paper in this volume p. 107 should be corrected: The sequence (Å) should read

\[
\begin{align*}
B_1 + X_1 &\Rightarrow X_2 + A_3 \quad (\pm 1) \\
B_2 + X_2 &\Rightarrow X_3 + A_3 \quad (\pm 2) \quad (\alpha) \\
B_3 + X_3 &\Rightarrow X_1 + A_1 \quad (\pm 3)
\end{align*}
\]

\(X_1, X_2 \) and \(X_3 \) being three different forms, or compounds with the substrates \((B_i, A_i) \), of the enzyme. The plus signs mean the reactions in the direction from left to right, the minus signs indicating reactions in the opposite direction.

Received March 30, 1960.

Free Butyric Acid as a Possible Source of Off-Flavour of the Cow's Milk After Administration of Oestrogens

TORKLEIV LUNAAS

Department of Sexual Physiology and Sexual Pathology, Veterinary College of Norway, Oslo, Norway

During investigations on the metabolism of oestrogens in the cow undertaken at this department peculiar alterations of the milk after parenteral administration of the hormones were repeatedly observed. To further explore the nature of these alterations 10 mg oestradiol-17β in 5 ml propylenglycol was injected intramuscularly to a non-pregnant cow producing 8 liters milk a day. Daily milk samples were frozen on the day of drawing and analysed in series immediately after thawing.

On the week after injection the milk produced per day gradually decreased to