I am indebted to Mrs Birgit Johansson and Miss Anita Wallin for skilful technical assistance. The investigation was supported by a grant from the Medical Faculty, University of Göteborg to the author and a grant from the Swedish Dairies Association to Prof. Olof Mollander, Dr. Lars Svennerholm and the author.

4. Grooves, M. L. In manuscript.
13. Hanson, L. Å. and Johansson, B. Unpublished results.

Received March 2, 1960.

Perjodatoxydation von Phenolen VI*. Dimere o-Chinole aus Mesitol und 2,6-Dimethylphenol

ERICH ADLER, JOSEF DAHLÉN und GERTRUD WESTIN

Organisch-chemisches Institut, Chalmers Technische Hochschule, Göteborg, Schweden

Die Einwirkung von Natriumperjodat auf wässrige Lösungen von Mesitol bzw.

2,6-Dimethylphenol führt in rascher Reaktion zu Substanzen vom Schmp. 185º bzw. 196º, für welche die Strukturen der Dimere V¹ bzw. VI angenommen wurden. Ihre Entstehung war verständlich mit der Annahme, dass die Phenole zunächst zu den o-Chinolen I bzw. II oxydiert werden, und dass die letzteren sich durch Diels-Alder-Reaktion dimerisieren. Wesely und Mitarb. hatten das Dimere vom Schmp. 183º auch bei der alkalischen Verseifung von 2,4,6-Trimethyl-o-chinolacetat (I, OAc statt OH) erhalten und für das Produkt ebenfalls Struktur V vermutet. Direkter Vergleich der beiden Präparate bestätigte deren Identität.

Kürzlich berichteten jedoch Wesely und Mitarb. über Versuche, welche die genannten Autoren zu einer Revision der Formel V veranlasste. Man fand, dass die alkalische Verseifung von 2,4,6-Trimethyl-o-chinolacetat (I, OAc statt OH) neben dem Dimeren vom Schmp. 183º überraschenderweise monomeres 2,5,6-Trimethyl-o-chinol (III) lieferte. Im alkalischen Medium war demnach eine Acyloanlagerung einge-

Wären die von Wessely c.a. für die beiden Dimeren vorgeschlagenen Strukturen VII und VIII richtig, so müsste also angemerkt werden, dass auch unter den von uns angewandten Bedingungen der Perjodatoxydation die primär entstehenden o-Chinole I bzw. II sich in III bzw. IV umlagerten, bevor Dimerisierung eintrat. Da wir bei pH 4—5 (Zimmertemp.) arbeiteten und die Reaktion innerhalb 5 Min. abgeschlossen ist, erschien uns diese Annahme unwahrscheinlich. Aus den nachstehenden Ergebnissen folgern wir, dass den Dimeren die "normalen" Strukturen V bzw. VI zukommen.

Perjodatoxydation von 2,3,5-Trimethylphenol gab kein Dimere, sondern (neben 2,3,5-Trimethyl-p-chinon) das monomere 2,3,5-Trimethyl-o-chinol III, das bei gewöhnlicher Temperatur stabil war. Die rasche Bildung des Dimeren vom Schmp. 183° bei der Perjodatoxydation von Mesitol kann demnach nicht über das 2,3,5-Trimethyl-o-chinol verlaufen.

Es scheint, dass die Versuchsresultate von Wessely c.a. damit zu erklären sind, dass sowohl in Alkali wie beim trockenen Erhitzen die o-Chinolpaare I, III bzw. II, IV sich in Acyloinumlagerungs-Gleichgewichten befinden, und da wohl I und II, nicht aber III und IV zur Dimerisierung neigen, so werden unter den genannten Bedingungen I und II immer in dimerer Form (V und VI), III und IV immer in monomerer Form gefunden.

Ausführliche Publikation obiger und weiterer Versuche erfolgt demnächst.

Der eine von uns (E.A.) dankt Herrn Prof. Wessely, Wien, bestens für die Freundlichkeit, uns von seinen Ergebnissen durch Überwendung eines Korrekturabzugs der Arbeit vorzeitig zu unterrichten, sowie für sein Entgegenkommen beim Austausch der Dimerpräparate.
