Eine quantitative Untersuchung über die Protolysenverhältnisse zweier sulfonierten basischen Triphenylmethanfarbstoffe

RUNE CIGÉN

Abteilung für anorganische und physikalische Chemie des Chemischen Instituts der Universität Lund, Schweden

Den Analysen von Bodforss⁵ gemäß hat das Lichtgrün SF, (LG), zwei Sulfonsäuregruppen und die Konstitution I. Das Brillantsäuregrün 6 B (BG), hat die Konstitution II.
An diesen Farbstoffen durchgeführte Untersuchungen zeigten, dass ihre Protolyse reaktionen qualitativ mit denen der früher untersuchten nicht sulfonierten basischen Triphenylmethanfarbstoffe übereinstimmen. Man kann daraus ein Protolysenschema derselben Art für LG und BG aufstellen wie das früher für Malachitgrün und Kristallviolett geschah.

Die Reaktionen, die stattfinden, wenn man das pH der Lösung verändert, können folgenderweise geschrieben werden, falls man BG und LG

Ausgezogene Pfeile bedeuten, dass die Reaktionen sehr rasch, "momentan", verlaufen, während gestrichelte Pfeile bedeuten, dass die Reaktionen mit messbarer Geschwindigkeit verlaufen.

Acta Chem. Scand. 13 (1959) No. 6
Folgende Konstanten werden definiert:

\[K_1 = \frac{[G]}{[B][H^+]} ; \quad K_3 = \frac{[S'][H^+]}{[S']} ; \quad K_4 = \frac{[C][H^+]}{[S']} ; \quad K_2 = \frac{[S]^\infty}{[G]^\infty} ; \]

\[K_6 = \frac{[B]^\infty}{[S']^\infty} \]

K_1 = die Geschwindigkeitskonst. der Reaktion \(G + H_2O \rightarrow S' \)

K_2 = \(S'' \rightarrow G + H_2O \)

K_3 = \(B + H_2O \rightarrow S' \)

K_4 = \(S' \rightarrow B + H_2O \)

K_5 = \(B + OH^- \rightarrow C \)

K_6 = \(C \rightarrow B + OH^- \)

Die Untersuchungen wurden mit einem Spektrophotometer durchgeführt, weshalb spezifische Extinktionen benutzt wurden, um die Konzentrationen der verschiedenen Farbstoffkomponenten auszudrücken. Hierbei bedeuten \(\varepsilon_B, \varepsilon_G \) die molekularen Extinktionskoeffizienten für B und G

\(\varepsilon_o, \varepsilon_\infty \) die spezifische Extinktion einer Lösung bei der Zeit 0 und t und bei Gleichgewicht (die Schichtdicke \(d = 1 \text{ cm} \))

\(E_o, E_t, E_\infty \) die abgelesenen Extinktionen, wenn \(d \neq 1 \)

\(\varepsilon_B, \varepsilon_G \) die spezifische Extinktion einer Lösung die nur B oder G enthält.

Man kann folgende Beziehungen ableiten (vgl. Ref.5,4)

\[K_1 = \frac{\varepsilon_B - \varepsilon_o}{(\varepsilon_o - \varepsilon_G)[H^+]} \quad (1) \]

(1) kann folgenderweise umgeschrieben werden

\[\frac{[H^+]}{\varepsilon_B - \varepsilon_o} = \frac{[H^+]}{\varepsilon_o - \varepsilon_G} + \frac{1}{K_1(\varepsilon_B - \varepsilon_G)} \quad (2) \]

In einem Diagramm trägt man \([H^+]/(\varepsilon_B - \varepsilon_o) \) als Funktion von \([H^+] \) auf und bekommt so eine Gerade, deren Abschnitt auf der Orinatenachse, \(y \), und deren Winkelkoeffizient, \(l \), die Gleichungen \(y = 1/K_1(\varepsilon_B - \varepsilon_G) \) und \(l = 1/(\varepsilon_B - \varepsilon_G) \) ergeben.

Bei Gleichgewicht wird die Extinktion

\[\varepsilon_\infty = \frac{\varepsilon_B + K_1[H^+] \cdot \varepsilon_G}{1 + 1/K_6 + K_4/K_6[H^+] + K_1[H^+](1 + K_2)} \quad (3) \]

In sauren Lösungen, pH \(\sim 1 \), gibt (3)

\[K_2 = \frac{\varepsilon_G}{\varepsilon_\infty} + \frac{\varepsilon_B - \varepsilon_\infty(1 + K_1[H^+] + 1/K_6)}{\varepsilon_\infty \cdot K_1[H^+]} \quad (4) \]

und in schwach alkalischen Lösungen kann (3) folgendermassen approximiert
und umgeschrieben werden

\[
\frac{[H^+]}{e_\infty} = [H^+] \cdot \frac{1 + \frac{K_3}{K_6 \cdot e_B}}{\frac{K_4}{K_6 \cdot e_B}}
\]

(5)

Aus (5) kann man, wenn man \([H^+] / e_\infty\) als Funktion von \([H^+]\) aufträgt, \(K_4 / K_6\)
und unter gewissen Umständen \(K_6\) erhalten.

Man kann folgende zusammenfassende Gleichung für die Kinetikreaktionen
ableiten, wenn man annimmt, dass die individuellen Geschwindigkeitskonstan-
ten \(k_1,...,k_4\) bei den Hydratationen und Dehydratationen im Reaktionschema
unabhängig von dem pH sind, was für früher untersuchte Farbstoffe gilt. Da
die Totalkonzentration des Farbstoffes, \(C_M\), bei den Messungen im Vergleich
mit den Konzentrationen der benutzten Pufferlösungen sehr gering ist, verlaufen
die Zeitreaktionen pseudomonomolekular.

\[
k = \frac{1}{t} \ln \frac{e_0 - e_\infty}{e_t - e_\infty} = \frac{k_3 [H^+]^2 + k_4 K_3 [H^+] + k_6 K_3 K_4}{[H^+]^2 + K_3 [H^+] + K_3 K_4}
\]

\[+ \frac{k_1 K_1 [H^+] + k_3 + k_5 \text{[OH}^-\text{]}]}{K_4 [H^+] + 1}
\]

(6)

(6) kann in saurer Lösung, pH \(\leq 1\), folgendermassen approximiert werden

\[
k = \frac{1}{t} \ln \frac{e_0 - e_\infty}{e_t - e_\infty} = k_1 \cdot \frac{K_1 [H^+]}{1 + K_1 [H^+]} + k_2
\]

(7)

und in stark alkalischer Lösung, pH \(> 10\),

\[k = k_6 + k_3 + k_5 \text{[OH}^-\text{]}
\]

(8)

Zwischen diesen beiden Extremen kann man für pH 4—8 eine kleinere Approxima-
tion von (6) vornehmen

\[
k = \frac{k_3 K_3 [H^+]}{[H^+]^2 + K_3 [H^+] + K_3 K_4} + k_3
\]

(9)

Wenn man für eine grosse Anzahl von Lösungen, die man durch Mischung
einer Farbstoffstammlösung mit geeigneten Puffern erhält, die Anfangs- und
die Gleichgewichtsextinktionen bestimmt und außerdem die Geschwindigkeit
der Farbbänderungen misst, kann man aus den oben gegebenen Gleichungen
die Konstanten im Protolysenschema bestimmen.

Je nach den Grössenverhältnissen zwischen den verschiedenen Konstanten
sind die vorgenommenen Approximationen mehr oder weniger gut, und schritt-
weise Approximationen können erforderlich werden.

Fig. 1. Absorptionskurven von Brillantsäuregrün 6 B in Wasserlösungen. Kurve B entspricht dem blauen Farbton, B, (in 0,5 M KCl) und Kurve G dem gelben, G, (in 2 M HCl).

EXPERIMENTELLES

Zu Pufferlösungen wurden Salzsäure, Natriumacetat, Dinatriumhydrogenphosphat, Kaliumdihydrogenphosphat, Borsäure und Natriumhydroxyd, die sämtliche von pro Analysis Qualität waren, verwendet.

Man kann thermodynamische Konstanten in einem so komplizierten Reaktionsschema wie das von diesen Farbstoffe kaum bestimmen. Darum wurde die Methode gewählt, Konzentrationskonstanten zu bestimmen, die bei der Ionenstärke 0,5 M gelten, mit Kaliumchlorid p.a. als Neutralsalz.

Die Apparatur war dieselbe, die für die Untersuchungen über Kristallviolett benutzt wurde (Ref.⁴).

Fig. 2. [H⁺]/(ε₉ - ε₀) als Funktion von [H⁺] für die Bestimmung von K₁ und ε₉.

□ λ = 636 μm. ○ λ = 460 μm.

Acta Chem. Scand. 13 (1959) No. 6
MESSUNGEN UND ERGEBNISSE

Brillantsäuregrün 6 B. Zuerst wurden Absorptionskurven für BG in 0,5 M KCl und in 2 M HCl aufgenommen; Fig. 1 Kurve B und G. Kurve B zeigt, dass die blaue Form ein Absorptionsmaximum für $\lambda = 636 \text{ m}\mu$, $e_{\text{max}} = 1,02 \times 10^8$ und eines für $\lambda = 416 \text{ m}\mu$, $e_{\text{max}} = 1,05 \times 10^4$, hat. Die gelbe Form G hat ein Absorptionsmaximum für $\lambda = 440 \text{ m}\mu$, und e_{max} wurde später zu $3,0 \times 10^4$ bestimmt. In 2 M HCl liegt der Farbstoff teilweise als ein farbloses Salz, S'', vor, weshalb man aus der Absorptionskurve die molekulare Extinktion von G nicht direkt erhalten kann.

Die Bestimmung von K_1. Zwischen pH 1 und pH 0 schlägt die Farbe von BG von blau in gelbgrün um, wegen der Reaktion $\text{B} + \text{H}^+ \rightleftharpoons \text{G}$. Eine Reihe von Messlösungen wurde dadurch bereitet, dass die Farbstammlösung schnell mit verschiedenen Pufferlösungen von HCl + KCl in Y-geformten Röhren gemischt wurde. Das Gleichgewicht $\text{B} + \text{H}^+ \rightleftharpoons \text{G}$ steht sich augenblicklich ein, aber die Lösungen verbläsen danach. Deshalb wurden die Extinktionen zur Zeit $t = 0$ extrapoliert. Für die Messlösungen war $C_M = 1 \times 10^{-5}$ M, $[\text{H}^+] = 0,080$–$0,500$ M, $d = 1$ cm, $\lambda = 636$ und 450 mμ, $T = 20,0 \degree$C. In Fig. 2 ist $[\text{H}^+]/(e_0 - e_\infty)$ als Funktion von $[\text{H}^+]$ der Gleichung (2) gemäss aufgetragen. Man erhält für $\lambda = 636$ mμ: $y = 0,300$ M und $l = 0,99$ und für $\lambda = 450$ mμ: $y = -1,05$ und $l = -3,45$. Dies ergibt bei 636 mμ: $K_1 = 3,30 \pm 0,05 \text{ M}^{-1}$, $e_0 = 0,010$, $e_\infty = 1,0 \times 10^8$ und bei 450 mμ: $K_1 = 3,29 \pm 0,05 \text{ M}^{-1}$, $e_0 = 0,301$, $e_\infty = 3,0 \times 10^4$.

Die Bestimmung von K_2. Die Gleichgewichtsexstinktionen wurden für eine Reihe von Lösungen abgelesen. $C_M = 2 \times 10^{-5}$ M, $[\text{H}^+] = 0,150$–$0,500$ M, $d = 5$ cm, $\lambda = 636$ mμ, $T = 20\degree$C. In Tab. 1 sind die aus (4) berechneten K_2-Werte. Der Mittelwert wird $10,0 \pm 0,2$.

Die Bestimmung von k_1 und k_2. Die Bleichung der gelbgrünen Lösung, die man erhält, wenn man eine blaue Farbstammlösung mit verschiedenen Pufferlösungen aus HCl + KCl mischt, wurde kinetisch verfolgt. In Tab. 1 finden sich die Geschwindigkeitskonstanten k und k_1, die man bekommt,

<table>
<thead>
<tr>
<th>[H$^+$] M</th>
<th>e_∞</th>
<th>K_1</th>
<th>k min$^{-1}$</th>
<th>k_1 min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,500</td>
<td>0,055</td>
<td>9,8</td>
<td>0,134</td>
<td>0,185</td>
</tr>
<tr>
<td>0,400</td>
<td>0,067</td>
<td>9,9</td>
<td>0,127</td>
<td>0,190</td>
</tr>
<tr>
<td>0,350</td>
<td>0,075</td>
<td>10,0</td>
<td>0,118</td>
<td>0,192</td>
</tr>
<tr>
<td>0,300</td>
<td>0,087</td>
<td>10,0</td>
<td>0,112</td>
<td>0,187</td>
</tr>
<tr>
<td>0,250</td>
<td>0,101</td>
<td>10,1</td>
<td>0,1035</td>
<td>0,187</td>
</tr>
<tr>
<td>0,200</td>
<td>0,123</td>
<td>10,1</td>
<td>0,0945</td>
<td>0,189</td>
</tr>
<tr>
<td>0,150</td>
<td>0,160</td>
<td>9,9</td>
<td>0,0814</td>
<td>0,188</td>
</tr>
<tr>
<td>0,100</td>
<td>0,190</td>
<td></td>
<td>0,0856</td>
<td>0,188</td>
</tr>
<tr>
<td>0,080</td>
<td></td>
<td></td>
<td>0,0576</td>
<td>0,186</td>
</tr>
</tbody>
</table>

Mittelwert | 10,0 | 0,188 |

_Tabelle 1. Berechnung von K_1 und k_1. Brillantsäuregrün 6 B. $\lambda = 636$ mμ, $T = 20,0 \degree$C, $C_M = 2 \times 10^{-4}$ M, $d = 5$ cm._

Acta Chem. Scand. 13 (1959) No. 6
wenn man die Gleichung (7) verwendet. Da \(k_1[G]_\infty = k_2[S'']_\infty \) und \([S'']_\infty /[G]_\infty = K_2 \), kann man \(k_1 \) und \(k_2 \) aus (7) berechnen, wenn man \(K_1 \) und \(K_2 \) kennt. Ganz wie für die früher untersuchten basischen Triphenylmethanfarbstoffe sind auch hier \(k_1 \) und \(k_2 \) vom pH unabhängig. Man bekommt die Mittelwerte \(k_1 = 0,188 \pm 0,003 \text{ min}^{-1} \) und \(k_2 = 0,0188 \pm 0,0006 \text{ min}^{-1} \).

Die Bestimmung von \(K_4/K_3 \). In schwach alkalischen Lösungen verblasst BG langsam unter Bildung von dem farblosen Salz, \(S' \), und dem farblosen Carbinol, C. In einer Reihe von Lösungen wurde die Farbstoffstammlösung mit verschiedenen Boratpuffern gemischt. Die Gleichgewichtsextinktionen, \(e_\infty \), wurden nach drei Tagen abgelesen. \(C_M = 1 \times 10^{-5} \text{ M}, d = 1 \text{ cm}, \lambda = 636 \text{ m\mu} \).

Fig. 3. \([H^+]_e/\infty\) als Funktion von \([H^+]\) für die Bestimmung von \(K_4/K_3 \). \(\lambda = 636 \text{ m\mu} \).

Fig. 4. Kinetikmessungen in NaOH + KCl, \(\lambda = 636 \text{ m\mu}, T = 20.0^\circ\text{C} \). \([\text{OH}^-]\) ist von oben nach unten 0.0316, 0.0632, 0.1264 und 0.2528 M.

In Fig. 3 ist \([H^+] / e_\infty\) gemäß Gleichung (5) als Funktion von \([H^+]\) aufgetragen. Man erhält \(y = 2.43 \times 10^{-9}\) M, \(l = 0.98\) und \(K_4 / K_6 = (2.48 \pm 0.05) \times 10^{-9}\) M.

Die Bestimmung von \(k_3\) und \(k_6\). Die Verbleichung in stark alkalischen Lösungen wurde auch untersucht. In Fig. 4 sind Kinetikmessungen bei vier verschiedenen \([OH^-]\) graphisch dargestellt, und in Fig. 5 sind die aus Fig. 4 erahnten Geschwindigkeitskonstanten, \(k\), als Funktion von \([OH^-]\) aufgetragen. Man ersehst aus Fig. 5, dass \(k\) dem \([OH^-]\) direkt proportional ist. Von der Gleichung (8) erwartet man ja auch, dass \(k\) eine lineare Funktion von \([OH^-]\) sein soll. Man kann aber \(k_6 + k_3\) nicht aus Fig. 5 bestimmen, da die Gerade durch die Origo läuft. Man bekommt \(k_5 = 2.73 \pm 0.03\) min\(^{-1}\) M\(^{-1}\) und \(k_6\) kann dann folgendermaßen bestimmt werden. Bei Gleichgewicht gilt

\[
k_5[OH^-][B]_\infty = k_6[C]_\infty
\]

Aber \([H^+][C]_\infty = K_4[S']_\infty\) und \(K_6[S']_\infty = [B]_\infty\), weshalb \(k_6 = k_2 K_w K_4 / K_6\). Früher wurde \(K_4 / K_6\) zu \(2.48 \times 10^{-9}\) bestimmt, und da wird \(k_6 = (1.36 \pm 0.05) \times 10^{-5}\) min\(^{-1}\), da einer anderen Untersuchung gemäß \(K_w = 1.24 \times 10^{-14}\).

Die Bestimmung von \(k_3\), \(K_4\), \(K_6\), \(k_3\) und \(k_4\). \(k_3\) wurde durch Kinetikmessungen in einem Boratpuffer pH = 8,74 bestimmt; Fig. 6. In diesem pH-Gebiet kann man die Gleichung (6) folgendermaßen approximieren

\[
k = k_3([H^+] K_4 / K_4 + 1) + k_6 + k_5[OH^-]
\]

Da \(k_5\), \(k_3\) und \(K_6 / K_4\) bekannt sind, kann man \(k_3\) bestimmen. Man erhält \(k_3 = (4.79 \pm 0.05) \times 10^{-4}\) min\(^{-1}\).

Die restlichen Konstanten wurden folgenderweise bestimmt. Eine partiell entfärbte Farbstammlösung von BG in 0,02 M HCl wurde mit verschiedenen Acetatpuffern gemischt, deren Zusammensetzung so war, dass man pH 3,92 — 6,14 bekam. Hierbei bildete sich B wieder, mit einer Geschwindigkeit, die \(k\) in der Gleichung (6) ergibt. In diesem pH-Gebiet kann man (6) zu

\[
k = \frac{k_4 K_5 [H^+]}{[H^+]^2 + K_4 [H^+] + K_3 K_4 + k_3}
\]

approximieren. Deriviert man (12) hinsichtlich \([H^+]\) erhält man

\[
[H^+]k_{\text{max}} = \sqrt{K_3K_4}
\]

(13)

und

\[
k_{\text{max}} = \frac{k_4K_3}{K_3 + 2 \sqrt{K_3K_4}} + k_3
\]

(14)

(14) kann wie folgt geschrieben werden

\[
k_{\text{max}} = \left(\frac{K_6}{K_4} \cdot \frac{K_3K_4}{K_3 + 2 \sqrt{K_3K_4}} + 1 \right) \cdot k_3
\]

(15)

In (15) sind \(K_6/K_4\) und \(k_3\) früher bestimmt, und aus (13) erhält man \(K_3K_4\). Man kann daher \(K_3\) aus (15) bestimmen und danach \(K_4\), \(K_6\) und \(k_4\) berechnen. In Fig 7 ist \(k\) gegen pH für eine Reihe von Kinetikmessungen in Acetatpuffern aufgetragen. Man bekommt \(k_{\text{max}} = 0,297 \text{ min}^{-1}\) für pH = 5,06, und \([H^+] = 8,71 \times 10^{-6}\) ergibt \(K_3K_4 = 7,59 \times 10^{-11}\). Dies ergibt \(K_3 = (3,27 \pm 0,06) \times 10^{-5} \text{ M}, K_4 = (2,32 \pm 0,05) \times 10^{-6} \text{ M}, K_6 = (9,4 \pm 0,3) \times 10^2\) und \(k_4 = (0,45 \times 0,02) \text{ min}^{-1}\).

Hiermit sind sämtliche Konstanten im Protolsenschema bestimmt. Die ausgezogene Kurve in Fig. 7 ist aus (12) berechnet, wobei die oben gegebenen Konstantwerte benutzt wurden. Die Übereinstimmung zwischen den experimentell gefundenen \(k\)-Werten (Kreise) und den aus (12) berechneten ist gut.

Dem Protocolschema gemäss soll \(K_1K_2K_3K_6 = 1\) sein. Das experimentell gefundenen Konstantprodukt wird 1.01.

Tabelle 2. Vergleich einander entsprechender Konstantwerte bei einigen Farbstoffen.

<table>
<thead>
<tr>
<th></th>
<th>Malachitgrün</th>
<th>p-Chlor-Malachitgrün</th>
<th>o-Chlor-Malachitgrün</th>
<th>Lichtgrün SF</th>
<th>Brillantsäuregrün 6 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_1 \times 10^{-1}) M</td>
<td>28</td>
<td>19,3</td>
<td>22,1</td>
<td>2,5</td>
<td>3,30</td>
</tr>
<tr>
<td>(K_2 \times 10^{-2}) M</td>
<td>2,7</td>
<td>6,3</td>
<td>4,3</td>
<td>1,95</td>
<td>3,3</td>
</tr>
<tr>
<td>(K_4 \times 10^{-4}) M</td>
<td>5,8</td>
<td>5,2</td>
<td>3,2</td>
<td>3,7</td>
<td>2,3</td>
</tr>
<tr>
<td>(K_8)</td>
<td>22</td>
<td>25</td>
<td>1,76</td>
<td>113</td>
<td>10,0</td>
</tr>
<tr>
<td>(K_8)</td>
<td>68</td>
<td>33</td>
<td>600</td>
<td>193</td>
<td>940</td>
</tr>
<tr>
<td>(k_1) min(^{-1})</td>
<td>0,168</td>
<td>0,145</td>
<td>0,00209</td>
<td>1,30</td>
<td>0,19</td>
</tr>
<tr>
<td>(k_2)</td>
<td>0,0078</td>
<td>0,0058</td>
<td>0,00120</td>
<td>0,0115</td>
<td>0,019</td>
</tr>
<tr>
<td>(k_3)</td>
<td>0,0065</td>
<td>0,0060</td>
<td>0,000127</td>
<td>0,023</td>
<td>0,00048</td>
</tr>
<tr>
<td>(k_4)</td>
<td>0,44</td>
<td>0,50</td>
<td>0,076</td>
<td>4,5</td>
<td>0,45</td>
</tr>
</tbody>
</table>

Lichtgrün SF. In Ref.² wurden einige Konstanten in dem Protolysechemas des Lichtgrün SF bestimmt, nämlich \(K_1 = 2,5 \pm 0,1 \) M\(^{-1}\), \(K_8 = 113 \pm 2\), \(k_3 = (1,30 \pm 0,04) \) min\(^{-1}\), \(k_2 = (0,0115 \pm 0,0005) \) min\(^{-1}\) und \(K_4/K_8 = 1/K_5 = (1,92 \pm 0,06) \times 10^{-8} \) M. Die restlichen Konstanten wurden dort wegen experimenteller Schwierigkeiten nicht bestimmt. Die Untersuchungen sind jedoch wiederaufgenommen und glücklich zu Ende geführt worden. Die grössten Schwierigkeiten lagen darin, dass der Farbstoff sich sehr schwer reinigen liess, und dass die grossen Reaktionsgeschwindigkeiten im pH-Gebiete 4—5 die Kinetikmessungen unsicher machten. Die Reaktionen verlaufen bei pH 5 bis 50 % in nur 16 sek.

Die Messungen und Bestimmungen der Konstanten wurden in derselben Weise wie für Brillantsäuregrün 6 B durchgeführt. Die Genauigkeit der Konstantwerte sind jedoch nicht ebenso gut.

Kinetikmessungen in NaOH + KCl ergaben \(k_5 = (59 \pm 1) \) min\(^{-1}\) M\(^{-1}\), \(k_8 = (3,8 \pm 0,2) \times 10^{-5} \) min\(^{-1}\) und in Boratpuffer, pH = 8,72, \(k_3 = (0,0233 \pm 0,0005) \) min\(^{-1}\) Die Kinetikmessungen in Acetatpuffern ergaben pH = 5,07 für \(k_{max} \), \(k_{max} = 1,05 \) min\(^{-1}\), und man erhält daraus \(K_3 = (1,95 \pm 0,10) \times 10^{-6}, K_4 = (3,7 \pm 0,2) \times 10^{-4}, K_6 = 193 \pm 10, k_4 = (4,5 \pm 0,3) \) min\(^{-1}\). Das experimentell gefundene Konstantprodukt \(K_1 K_2 K_3 K_8 \) wird 1,06.

Die erhaltenen Ergebnisse zeigen, dass die beiden nun untersuchten Farbstoffe sich ähnlich verhalten wie die früher untersuchten basischen Triphenylmethanfarbstoffe. Auffallend ist die Einwirkung eines Substituenten in orto-Stellung zum zentralen Kohlenstoffatom. Vergleicht man die Konstanten für Malachitgrün und dessen p-Chlor und o-Chlor Derivate und ferner Lichtgrün SF und dessen o-Chlor Derivat, Brillantsäuregrün 6 B, ersieht man aus Tabelle 2, dass ein Chlor in para-Stellung verhältnismässig wenig auf die Konstantwerte einwirkt. Dasselbe gilt von den Dissoziationskonstanten \(K_1, K_3 \) und \(K_4 \) für ein Chlor in orto-Stellung. Dagegen wirkt ein o-Chlor stark auf die Gleichgewichte zwischen den gefärbten und den farblosen Formen sowie auf die Geschwindigkeitskonstanten ein. Die Reaktionen gehen wesentlich langsamer, und die Gleichgewichte werden gegen die gefärbten Formen stärker verschoben, wahrscheinlich, weil das o-Chloratom durch sterische Hinderung

REFERENZEN

Eingegangen am 23. Februar 1959.

Acta Chem. Scand. 13 (1959) No. 6