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The Kinetics of Crystal Growth in Barium Sulfate

Precipitation
II. Temperature Dependence and Mechanism *

ARNE E. NIELSEN

Universitetets fysisk-kemiske institut, Copenhagen, Denmark

The chronometric integrals (chronomals) for precipitation processes
with time-independent particle number concentrations are solved, and
a table of their numerical values is calculated.

The diffusion coefficient of BaSO, and the fourth order rate con-
stant of crystal growth in BaSO, precipitation are determined from
experiments at a range of temperatures between 0 and 70°C.

The dissociation of 2—2 electrolytes in aqueous solution is dis-
cussed with special regard to BaSO,.

A number of formally possible rate-determining mechanisms are
discussed and four of them found to be in agreement with the experi-
ments.

The results are compared with the Volmer-Becker-Déring and the

- Frank-Cabrera-Burton theories of crystal growth and are found to be
in agreement with the former, but not the latter of these, <. e. the rate
is governed by the formation of surface nuclei requiring & supersatu-
ration ratio of about 10 or more in order to proceed at appreciable
speed.

I. THEORETICAL PART; PRECIPITATION CHRONOMALS

1. Introduction. During the precipitation from a supersaturated solution
the number of particles may either be constant or change with time. Here
we shall only discuss cases where the number of particles is constant 1710, It
follows that provided the solution is properly stirred the particles will grow
with*the same rate and be equally large. This has been observed with many
sparingly soluble salts.

We shall first derive kinetic equations for precipitation, stating explicitely
the constants of proportionality in terms of quantities such as the number of
particles, the initial concentrations and the molar volume of the precipitating
matter, and fundamental rate-constants. Then we will discuss how these
quantities may be obtained from experiment and from theory.

* Part I. of this work, Ref.!.
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These methods will then be applied to the data from experiments on barium
sulfate. Several mechanisms are suggested and compared to the experimental
results. At last the results of this investigation will be compared to the accep-
ted theories of crystal growth.

2. Derivation of the kinetic equations. If the rate of particle growth during
precipitation from a supersaturated solution is controlled by the diffusion from
the bulk of the solution to the surface of the particles we have 1,511,

dr/dt = vD(dc/dg)o-,

where r is the radius of the particle or, if it is not a sphere, of a sphere of
approximately the same volume as the particle, ¢ the time, v the molar volume
of the material, D the diffusion coefficient, ¢ the concentration in mole/cm3,
and g the distance from the center of the particle. Smoluchowski ? showed

that (de/do)pmr = (c—s) | 7

where s is the solubility of the material. If we introduce the degree of reaction

e by means of
l—a = (¢c—s) [ (¢,—s)

where c, is the concentration at ¢ = 0, we may write

dr/dt = vD(c—s) | r = vD(c,—s) (1—a) [ 7
Since now
=7 -l

where r is 7 at ¢ = o0, we have

(dr/dt =)

(1/3)reoasde/dt = vD(c,—s) (1—a)/ropa’ls

de/dt = 3vD(c,—s)a's (1—a)/r?,

st =12 I, [3v(c—s)
where ’

I, = _[oaa“'/x(l—a)‘ldtx

If the rate of growth is controlled by a reaction of the order p in the surface
of the particle 1315, with the rate constant k, (mole/cm?-s) (mole/cm3)?
dr [ dt = vk,c?
We then have (when c¢)) s)
(dr/dt =) (1/3)rpade/dt = vk,ch(l—a)?
st = 1ol ,[3vkyct

where
I, = [Ga~"(1—a)?da

Frisch and Collins ! solved the problem of mixed diffusion and first order sur-
face reaction. In our terminology the solution may be obtained thus: let the
concentration be ¢’ at the surface of the crystal; then

dr/dt = (1/3)rpe"rda/dt = vD(c,(1—a)—c')[roa'ls = vkyc'?
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By elimination of ¢’ one gets, for all values of p

de

de. % ,da]’
dt

_ -1 "o 2 Ye
3ukyreo [c"(l ) 3vDg's * dt
For p = 1 this can be reduced to

de 2 o

+

de ~ 3vDc,(1—a)a'h 3vkyc (1—a)a'ls
with the solution
— _r_zoIL + l‘x?ll
" 38vDc, 3vkyc,

which is the sum of the solutions to the pure’ problems. For p 7 1 the solu-
tion is not simply the sum of the corresponding expressions.

Sometimes it is convenient to use the length [ of the edge in a cube of the
same volume as the particle rather than r. In case of diffusional rate control it
is reasonable to substitute 7, by means of

(4/3)nr3 = 1B
giving 3
(= BIy |V 48a® vD(c,—s)

In case of a surface reaction we may use
dl/dt = 2vk,c?
l =lpa'
from which follows
di/dt =) (1/3)lada/dt = 2vk,ch(1—a)?
de/dt = 6vkyllctas(1—a)?
and
t = lwIp/Gvkpcg

If the number of particles N per unit volume is known in stead of 7o or Iy
We may use
13 = v(c,—s) /N
and obtain 3
t = I, | DV 48z%v(c,—s)N?

and, respectively (for ¢ )) s)
i = Ip / &)lltkpcg—llgNlll

These two formulae are only exact for spheres and cubes, respectively, but may
be applied without serious errors to particles of highly compact shape. In
case of thin plates, needles or “star-like’ crystals as are often met with in
electrolyte precipitation experiments the formulae can be expected to give
only the right order of magnitude.

Acta Chem. Scand. 13 (1959) No. 4
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3. Formulae, numerical values. The integrals I, and I, have been calcula-
ted by numerical integration %8. I, was expressed by analytic functions by
LaMer and Dinegar 8. The mixed case of I, and I; was similarly solved by
Frisch and Collins *'. Formulae for I, and I, (with any positive integer p)
may be found by substituting a new variable for o's, decomposing, and using
standard methods of integration. We introduce for brevity the two functions
of a

V14 ah+ah l1—a
- —1ln ——*
L —_ ]-n l—a'/' - 2 (1‘—al/')3
T =V 3 arctg ——1/3

14 27

(arctg is the inverse tangent, sometimes denoted tan™). The integrals can then
be written

I,—=L—T
L —LyrT
s 2
I, = T + 0 I
i a’/x(8—5a) 5
I; = ija)-z— + 9 I]
_ a'h(41—b2a 4 202?) | 40
L=y Tar h
7 _ @h(532—1 0230 4 79202—2200%) | 110 ,
5 = 324(1—a)? 243 1
;. _ (421010 885a + 12 7056*—7 084a 4 1540a%) | 308 ,
6= T 2430(1—a)® T 729 &1

Numerical values of Iy, I, I,, I3 and I, are given in Table 1. £ and 7' may
be found from the table by using

L= (I, + Ip)/2
T = (I — Ip)/2
The coefficients in the general expression for 1,

[, = Gt ok padt Gyt =th
P (I—apT 1

can be found by solving the linear equations
;—1301,’1 =1 — bp

. . . 1 .
(—5)ap; + (p—t + 3)api-1 = (——1)'“3:1) by, 1 =23...p—1

$app-1 = (—1)%b,
where

(fz—l)z (—1) ... @—=+1)
—1 2.3 ..... (—1)

Acta Chem. Scand. 13 (1959) No. 4
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Table 1, The precipitation chronomals.

a Ip 1, I, I, I,
0.0001 0.00323 0.13925 0.1393 0.1393 0.1393
0.0003 0.00672 0.20084 0.2009 0.2009 0.2009
0.001 0.01501 0.30008 0.3001 0.3002 0.3003
0.003 0.03124 0.43299 0.4333 0.4337 0.4340
0.01 0.06990 0.64795 0.6496 0.6512 0.6529
0.03 0.14659 0.93928 0.9466 0.9540 0.9614
0.05 0.20778 1.11943 1.1341 1.1492 1.1647
0.10 0.33696 1.42943 1.4686 1.5104 1.5548
0.15 0.45155 1.65949 1.7314 1.8106 1.8978
0.20 0.56005 1.85382 1.9669 2.0960 2.2438
0.25 0.66620 2.02854 2.1922 2.3868 2.6194
0.30 0.77234 2.19183 2.4175 2.6977 3.0485
0.35 0.88009 2.34863 2.6500 3.0423 3.5596
0.40 0.99114 2.50263 2.8965 3.4370 4.1922
0.45 1.10886 2.65657 3.1644 3.9036 5.0051
0.50 1.22901 2.81312 3.4628 4.4731 8.0927
0.55 1.35960 2.97499 3.8040 5.1931 7.8131
0.60 1.50122 3.14530 4.2055 6.1403 9.8509
0.65 1.65737 3.32791 4.6936 7.4469 13.3541
0.675 1.74238 3.42542 4.9827 8.3047 15.8998
0.700 1.83304 3.52814 5.3118 9.3593 19.2811
0.725 1.93048 3.63722 5.6915 10.6825 23.8943
0.750 2.03596 3.75396 6.1369 12.3826 30.3893
0.775 2.15128 3.88019 6.6692 14.6297 39.8844
0.800 2.27882 4.01828 7.3204 17.7043 54.4171
0.825 2.42192 4.17160 8.1404 22.0962 77.9742
0.850 2.58542 4.34506 9.2118 28.7269 119.0924
0.875 2.77694 4.54623 10.6825 39.5090 198.357
0.900 3.00909 4.78777 12.8487 58.9801 374.256
0.925 3.30564 5.09345 16.3869 100.2645 858.979
0.950 , 3.71983 5.51652 23.3387 216.058 2 813.51
0.960 3.94639 5.74658 28.4932 332.021 5 433.07
0.970 4.23748 6.04112 37.0240 580.797 12 737.23
0.980 4.64633 8.45340 53.9667 1 286.58 42 530.6
0.990 5.34284 7.15329 104.4344  5070.31 336 725
0.995 6.03767 7.84980 204.899 20 137.4 2 680 115
0.999 7.64846 9.46189 1 005.97 500 672 333 667 227

The first and the last equation are not obtained by letting ¢ =1 and 2 = p

in the formula given for ¢ =2, 3, ... p—1.
It is easily proved that for p > 1
p-1
Ap; — ———
et p—1

which constitutes a check on the numerical calculations.

4. The evaluation of kinetic constants. The best method of treating the
data is probably to plot Iy, or I, as a function of the (through a) corresponding
experimental time 8. If the measurements are in accordance with the assump-
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tions behind the ’I’ chosen a straight line through origo is obtained. In some
cases the reaction is diffusion controlled in the beginning and becomes, e. g.,
fourth order later on. Then a curved curve is obtained which gradually
straightens and eventually approaches an asymptote of well defined slope.
Both when the whole curve and when only a part of it is a straight line the
diffusion coefficient or the rate constant may be calculated by means of the
following equations.

D = (dI,/dt), | (48n2)hv(c,—s)
= (dIp/dt) | (48n*v(c,—s) N?)"s
= (dI,/dt) [ 7.795(v(c,—s)N?)'ls

ky = (dI,/dt)leo | 6vct
= (dI,/dt) | 6v™ch N

lo may be found by measuring the particles under microscope. In the
experiments reported below N was found by counting at least 100 particles on
a blood cell counting chamber under microscope. Another possible procedure
would be to determine the sedimentation velocity according to Odén ¢ or
Andreasen 7. In a certain range of sizes the turbidity may be taken propor-
tional to the surface 18, which would also give the required information if the
constant of proportionality is known. It is safest, however, in all cases to
examine the particles under microscope in order to be sure whether they are
compact enough to justify the assumptions made in deriving the formulae.

I1. E¥PERIMENTAL PART. THE DIFFUSION COEFFICIENT AND THE RATE
CONSTANT FOR BaSO,

1. Introduction. Previously it was found ! that at 22°C the rate of growth
of BaSO, may be expressed by

dl /d¢ = 630 c* mu/s for ¢ < 0.3 mM

where [ is the length of the edge in a cube of the same volume as the crystal.
Dividing by twice the molar volume we get the rate of depositing matter on a
unit of surface. Transforming into c-g-s-units we have

ky = 6.3 X 10 /2 X 51.9 = 6.1 X 1017 (mole/cm?s) (cm?3/mole)*

in Table 2 are shown some new and probably more accurate data for a
range of temperatures. It was determined to use ¢, = 0.5 mM because this
gave the rates that could be measured best with the apparatus. With this ¢,
the rate is diffusion controlled in the first part and “’surface-reaction’-con-
trolled in the latest part of the experiment. Both D and k, can therefore be
determined from the same run.

2. Ezperimental. The reacting aqueous solutions, 40 ml 1.00 mM BaCl, and 40 ml
1.00 mM Na,SO, (pro analysi) were placed in an apparatus shown in Fig. 1, equilibrated
in a thermostated water bath, and mixed by pressing the rubber ball. The electric con-
ductance was measured as a function of time. The first reading was obtained 5 s after the
moment of mixing. From measurements on solutions having the compositions of the
reacting mixture at the degree of reaction a equal to 0.5 and 1.0, together with the value

Acta Chem. Scand. 13 (1959) No. 4
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Fig. 1. The apparatus. The solutions were

mixed by pressing the rubber ball. The

arrow indicates the connection from the

conductivity cell to the conductivity
meter.

at a = 0 obtained in the kinetic experiment, & calibration curve was constructed for
converting the electric conductance into a. The calibration curve was almost linear. The
solution was frequently stirred by transferring it from one to the other of the two glasses.
Afterwards a sample was placed on a counting plate and at least 100 particles were counted
under microscope.

3. Numerical treatment. D was calcalated by means of
D = (dI,/d?) | (48n2v(c,—s)N?)'!s
= (d1,/dt) / 7.795(vc, N2)'s
= (dIp/dt) [ 0.231 N

For dI,/dt was used the initial slope on a graph of I, versust. See Fig. 2
and Table 3.
k, was calculated by means of
ky = (dI,/dt) [ 6v™c; N
= (dl,/dt) | 6.58 X 10~22N's

Acta Chem. Scand. 13 (1959) No. 4



KINETICS OF CRYSTAL GROWTH 791

Table 2. Time in seconds (interpolated) as a function of a, from experiments with
¢, = 0.5 mM, at different temperatures.

a" t=0 25 35 50 60 70°C
0.05 25 14 10.5
0.1 50 24 17 15.5 22.5 11
0.2 102 37 43 25.5 38 16
0.3 154 49 62 37 53 20
0.4 217 64 85 49 68 24
0.5 293 85 116 65 89 31
0.55 330 105 138 75 103 36
0.6 376 132 169 91 120 42
0.65 450 170 210 111 143 52
0.675 500 193 232 124 160 57
0.70 560 215 268 143 180 64
0.725 640 243 310 165 198 72
0.75 740 283 366 205 225 80
0.775 340 444 250 300 97
0.80 430 560 420 360 125

where dI,/dt was found graphically on a plot of I, versus ¢, using the straight-
line part of the curve for large ¢. See Fig. 2 and Table 3.

4. Results. In Fig. 3 log D is plotted as a function of 1/7'. From the slope
dlogD/d(1/T) = —1 080 one finds the heat of activation for the diffusion pro-
cess AHE =5 000 -+ 500 cal/mole™. In the same figure is also plotted the
logarithm of the fluidity of pure water. It is seen that the heat of activation of
diffusion is a little greater than that of the fluidity. This is what one would
expect, because of the hydration of the ions.

Fig. 3 also shows logk, against 1/T. —dlogk,/d(1/T) = 1100 which cor-
responds to the apparent heat of activation

4H, = 5000 4 500 cal/mole.

A ten degree rise in temperature increases k, about one-third.

This may be compared to the value for crystal growth in magnesium oxalate
precipitation obtained by Lichstein and Brescia 19, AH, = 3 kcal/mole, al-
though they used a different theory 2 involving a first order constant.

Table 3. D and k,, from N and data in}Table 2 (see Fig. 2).

; N dIp/de dar,/ds D k,

°C 10%m-2 g1 s™1 10-%cm?/s 101%cm!/s’- mole®
0 1.81 0.0070 0.051 2.04 0.69

25 3.38 0.0157 0.160 3.02 1.68

35 0.66 0.0125 0.110 7.15 1.92

50 2.16 0.028 0.170 7.26 2.01

60 0.30 0.0146 0.160 14.1 3.63‘

70 2.76 0.050 0.544 11.0 5.88,

Acta Chem. Scand. 13 (1959) No. 4
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Fig. 2. Iy and I, as function of the ex-

%f}'imentally determined times at 25°C.

om the slope of the straight-line parts of

the curves the diffusion coefficient and

the fourth-order velocity constant were
determined.

Fig. 3. Diagram for determination of the

apparent heat of activation for diffusion

of BaSO, and for the surface reaction of

BaSO, crystal growth. In the middle is

plotted for comparison the logarithm of
the fluidity (1/) of pure water.

III. THE DISSOCIATION OF 2—2 ELECTROLYTES

Before discussing these results we will consider the composition of the
system. It is generally recognized that 2—2 electrolytes are only partly dis-
sociated in aqueous solution 21,22, For sulfates of bivalent metals we define

K, = (M*+) (SO:") / (MSO,)

K, = (MSO,) (S017) /| (M(S0,)2")

Ky = (M**) (M(SO,)z") / (MSO,),)

K, = (M**)*(8047)* | (MBO,),) = K,K,K,

The interpretation of experimental data from activity-, conductance- or
cryoscopic measurements on dilute solutions for finding the K’s is very un-
certain, since the effects of the interionic forces masks the effects of the in-
complete dissociation, and only approximate values of K; have been obtained
this way.

The difficulty has however been solved by Kenttémaa % who measured the
freezing point depression of CuSO,, ZnSO,, NiSO, and MgSO, in eutectic
(cryohydratic) mixtures of water and a salt; the salts used were KNOg, KC1O,
and KCIO,. Because of the presence of electrolytes in a roughly constant con-
centration even in the “pure solvent’ the depressions may be extrapolated to
infinite dilution of the 'MSO,’ in question without taking the interionic forces

Acta Chem. Scand. 13 (195%9) No. 4
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into account. From the law of mass action it follows that if m, denotes the
stoichiometric concentration of the added electrolyte and Z'm, the sum of the
concentrations of all the ions and molecules that are not common with those
arising from the saturating electrolyte, the function @ defined by
¢ = (2m—2'm,) [ (Xm,—m)?
satisfies
@ = 1/K;, + Zm,/K K,

Zm, and thereby also ¢ are found from the freezing point depressions.

From a plot of ¢ versus Xm; K; and K, may be obtained. K, is strongly
dependent on the ionic strength I, whereas K, may be regarded — in a first
approximation — as independent of the salt concentration. Kenttdmaa did
not give K, explicitely, but it is easily found from the reported values of the
coefficient in the linear expression for ¢. A

All values of K, lie between 0.1 and 0.25, most of them close to 0.15 M.
At I = 0, pK, ranges between 2.186 and 2.294 for the four sulfates of bivalent
metals investigated by Kenttimaa. In our experiments on BaSO, precipita-
tion I = 0.002 in the part of the experiment which is used for determination
of ky. At I =20.002 the correction to pK; is about —0.16; we may take
pK; = 2.1, K; = 0.008 mole/l as a representative value.

Since the dissociation constants seem to be the same for all sulfates of
bivalent metals, we may apply them to BaSO, as well.

This conclusion may seem a little too risky. Since BaSOj, is only 107° as
soluble as the sulfates on which K; and K, were measured one would perhaps
expect it to be appreciably less dissociated. This is however not the case. The
calibration curves mentioned in the experimental part of this article turned
out to be very near to straight lines. Actually the conductivity at « = 0.5
was higher than the arithmetic mean of the conductivities at ¢ = 0 and
« = 1 by about 2.5 9, of the total change, 1. e.

e= (xo5— (%o + %) [ 2) | (#o—%;) = 0.025
The curvature is due partly to interionic forces and partly to the incom-
pleteness of the dissociation

BaSO, = Bat+ - S0

with the dissociation constant
K, = (Batt) (S07) / (BaS0O,) = ¢6* | (1—08) = ¢, (1—a)d? | (1—0)

where ¢ is the degree of dissociation. If we neglect for the moment the inter-
ionic forces but not the incompleteness of the dissociation we get

#q = ABaso,Co(l—a)d + 2,

e = (805—0o) [ 26,
60.5/60 =(q = 14 2¢
K, | co =06/ (1—b,) = 0.5055 | (1—b0s5)
= ¢°0; | 2(1—gé,)

(2—¢%) | (2¢—¢)
Co(2—¢%)* [ (29—¢%) (2¢—2)
Co(1—4e—4e?)? [ (1—4e?)4e
Co(1/4e—2) = 0.0005 X 8 = 0.004 mole/l

(]

K,

R

Acta Chem. Scand. 13 (1959) No. 4
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Since the interionic forces also tend to diminish the electric conductivity
-and thus contribute positively to e, the value found for K is a minimum value;
we therefore only know that for BaSO,

K, > 0.004 mole/l}

but this is entirely in agreement with the assumption that K, has the same
value for BaSO, as for the highly soluble sulfates of bivalent metals, <. e.
K; = 0.008 mole/l. It is less certain to put K, = 0.15 for BaSO, because it
is that much in case of the highly soluble sulfates, but there is no reason to
assume it is wrong by more than, e. g., a factor of ten. Kj is entirely unattain-
able from Kenttdmaas experiments since the function ¢ was found to depend
lineary on XZm,. If we assume that the experimental uncertainty allows for a
maximum concentration of (MSO,), equal to M(SO,)z” at the highest concentra-
tion of MSO, used, we find from the mass action law)

Ky = (M*+)(M(SO,)") / (MSO,);) > (M*+) = 0.2 mole;.

For BaSO, of course K3 may be less. For the highly soluble sulfates we have
now

K, = K,K,K3 > 0.008 X 0.15 X 0.2 = 2 x310~M?° = 2 X 10" mole®/cm?

IV. THE RATE-DETERMINING MECHANISM IN BaSO, CRYSTAL GROWTH

Since the activation energy of the fourth order crystallization reaction is
nearly the same as the activation energies of BaSO, diffusion and of viscous
flow of pure water, the rate-determining step is a reaction in which almost
any close approach between two molecules of the reactants leads to reaction.

If the collision number of the reactants — when supposed not to react —
is Z collisions per unit of volume (or surface) and time, calculated from simple
gas theory, we may write the rate of the reaction

J = Zexp(—AG¥/RT)

where AG¥ is the standard activation free energy change, and exp(—AG¥/RT')
is the ratio between the number of collisions leading to reaction and the number
of collisions between the reactant molecules if no reaction took place.

In a liquid two molecules subject to an encounter have a rather large
probability of repetitive encounters, performing some sort of oscillations, be-
fore a third molecule comes in between. If a reaction of activation free energy
less than the activation free energy of diffusion can occur between the two
colliding molecules, it is almost certain that it will happen rather than the two
molecules depart. Therefore the free energy of activation of the reaction shall
be replaced by the free energy of activation for diffusion, and the temperature
dependence of the velocity is determined entirely by the enthalpy of activa-
tion for diffusion, and the change of Z with temperature. If we neglect any
entropy change of activation for diffusion we have

J = Zexp(—AH*|RT)
Acta Chem. Scand. 13 (1959) No. 4
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where empirically AH¥ ~ 5000 cal/mole¥ if Z is not strongly temperature
dependent; exp(—A4H*/RT) = 104 at 0°C.

We will now discuss the following types of possible rate determining
mechanisms.

(i) transport of matter from the solution to the crystal.

(i1) collision between molecules (or ions) from the solution and adsorbed molecules (ions).
(iii) triple collisions between two molecules (ions) and the crystal.

(iv) collision between adsorbed molecules.

Above ¢ = ca. 4 X 1077 mole/cm® (= 0.4 mM) the rate determining
mechanism has already been shown ! to be the diffusion of BaSO, — mostly
as ions — from the bulk of the solution to the surface. In the following we are
going to discuss ¢ {4 X 1077 mole/cm3. As an example we will estimate the
concentrations in a 0.1 mM = 10~7 mole/cm?® solution of BaS0Q,. (The solu-
bility is ca. 10~ mole/em?® at 25°C and ca. 8 X 1072 at 0°C; see Seidell 24 for
references.)

If we assume the following orders of magnitude (at 0°C)

K, =105 K, =10, K3 = 10~* mole/cm?

and, consequently K, = 10713 (mole/cm?®)? we find for ¢ = 10~ mole/cm? the
following concentrations:

(Bat*) = (SO4") = ¢ = 1077, (BaSO,) = 107,
(Ba(80,)27) = 10712 and ((BaS0O,);) = 1071 mole/cm3.

At this concentration we found experimentally J= k,ct="7 X 10~ mole/cm?s.

If the rate is determined by the frequency of collisions between the crystal
and molecules of concentration C' and molecular weight M (~200 g/mole)
the reaction rate per cm? is

J = OV RT|aM exp(—AH¥|RT) = 0.6 x C
It follows that if this mechanism shall be rate determining
C =17 X 1011/0.6 = 10~® mole/cm3

Since ((BaSO0,),) is only 1075 mole/cm? it can not be the diffusion of
{BaS0,), that is rate determining. It may bowever be the diffusion of BaSO,-
molecules. In order to get the right order (4) of the reaction only collisions with
another BaSO,-molegule at the surface may lead to growth. If one-tenth of the
surface is covered by adsorbed BaSO,-molecules in adsorption equilibrium
with the ionic contents of the solution at ¢ = 107 mole/cm?3, the observed rate
is obtained by this mechanism. Since the molar volume of BaSO, is 52 cm?
this corresponds to a concentration of 1/520 mole/cm?; which is 1/(520 X 10-9)
= 2 X 108 times as high as in the solution. Another possible mechanism cf the
same sort is the reaction between a colliding Bat+ jon and an adsorbed
Ba(S0,).” ion; only 10-1°/10~7 = 103 of the surface needs be covered by the
reactive ionic species. Since the atoms of the (probably) linear “SO,BaSO;
shall rearrange rather appreciably forming the (probably) square (BaSO,),,
there must be a rather low entropy of activation so that much more than 10-3
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of the surface must be covered, and the concentration at the surface must be
more than about (1/100) X 10-3/10-'2 = 107 times the concentration in the
solution.

Triple collisions are difficult to define in a generally acceptable way. If
we however count any encounter between two molecules or ions closer than a
distance A from the surface of the crystal as a triple collision, we may find the
required 1 by comparison with the experiment. The encounter may either
occur between two BaSO, molecules or between a Ba** and a Ba(SO,)z -ion.
We have, respectively, the (simple gas theory) collision numbers

Zy, = 202d?Y aRT|M
and
Zyy = mynydisl 8aRT [y
where
dyp = (dy + dy)[2, pap = My M, | (M, + M,)
With M = 200, p =100, d =dy; =5 A =5 X 10® ecm we find at 0°C
Zy, = C? X 5 x 1013
Zyy = (0,0, X 10 mole/em?s
where C, (; and C, are measured in mole/cm3. At ¢ = 1077, Jexp = 7 X 1012
mole/cm?s; but
J =24 X Zy; X exp(—AH*|RT)
=AX (0% X5 x108 x 104or =1 x (1C, X 101* x 104
With € = (BaS0,) = 10-° we find
A=1T7x101/5 X 10-°® = 0.01 cm
With €, = (Batt) = 107, C, = (Ba(S0,);”) = 102 we find
A =17 X 10-11/10° = 0.1 cm

None of these mechanisms can therefore give the observed rate with a reason-
able value of 4 (which must, of course, be of molecular dimensions, . e. A~ 1 A).
In a two dimensional gas

Zy, = n*dV aRT|M

where Z;; and Z,, are the numbers of collisions per cm? and s, between similar
and different molecules, respectively, and n, n,, n, are the surface concentra-
tions in molecules per cm?, other symbols having the same meaning as in the
case of a three-dimensional gas. With d = 5§ X 108 cm, M = 200, u = 100
we have Zyy = n? X 108

Zyg = MmNy X 2 X 1073

J =17 X 101 = Z,,exp(4AHF¥|/RT)/N, = n? x 10%-4/6 x 1028

Son=2 X 10! cm~2

or from Z,,
o myng = 1020 cm—4
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In a compact layer of BaSO, molecules n = thickness X contents in 1
em®=d X (1/v) X Ny =5 X 10-% X 0.02 X 6 X 1023 = 6 X 104 cm2. The
surface concentration necessary for the rate observed is only the fraction
2 X 1019/6 X 10'* = 3 X 10~ of that of a compact layer. Calculated as
volume concentration it is 2 X 1019/5 X 10~® = 4 X 1017 molecules/cm?® =
4 X 10'7/6 x 10%% = 10-% mole/cm3, ¢. e. 1 000 times as high as in the solution.
This mechanism seems thus quite reasonable.

Finally, nyn, = 102 cm™ corresponds to C,C, = 1020 (6 x 1023)-2 =
3 X 1028 (mole/em?)? = 3 X 10728/(5 X 10-8)2 = 1011 (mole/cm?)?; in the
solution C,C, = (Ba**) (Ba(S0,)” ") = 10~7 X 102 = 10! (mole/cm3)?; we
see that if the concentrations in the surface are 10* as large as in the solution,
this mechanism can give the right rate.

Conclusion. Four of the discussed mechanisms could give a fourth order
reaction with the right rate constant.

Reaction .
Cads /losoln
(1) BaSO,(soln) + BaSO,(ads) - crystal 2 x 10¢
(2) Ba++(soln) + Ba(SO,); (ads) — » > 107
(3) 2 BaSO,(ads) ~ » 108
(4) Bat++(ads) + Ba(S0,); (ads) - ’ > 104

If the differences between the four values of Cags/Ceomn are significant and
if we rate a reaction as more probable than any other requiring a higher ad-
sorption affinity to the crystal surface, in order to have the same velocity,
we may point out reaction (3) as the dominating one, (4) as less important and
(1) and (2) as practically negligible.

We have assumed that the (’apparent’) activation energy —RdInk,/d(1/T)
was due entirely to the diffusion process. Since

ky = Jct = (ZJch)exp(—AG+/RT)

any dependence of Z on T will contribute as well. Since the collisions involve
complex molecules or ions the enthalpy of association (= minus enthalpy of
dissociation) is a part of the ’apparent’ activation energy. A change by a
factor 10 in the ration Caas/Csom iS Necessary for every RTIn10 = 1 250 cal of
dissociation enthalpy. The heat of precipitation is about 5 000 cal/mole BaSO,
(Muller 2% found 5 455 at 25°C; from National Bureau of Standards’ “’Selected
Values . . .”’26 one finds 4 630 cal/mole BaSO, (evolved).) The heat of dissocia-
tion of BaSO, is probably numerically less than this number. It may be zero if
the energy change of hydration’ of the ions just compensates the work of the
.electric attraction forces.

V. COMPARISON WITH THE VOLMER-BECKER-DORING AND THE FRANK-
CABRERA-BURTON THEORIES OF CRYSTAL GROWTH

1. Introduction. The theories of crystal growth have been developed pri-
marily by Volmer and Weber 2%:28, Farkas 2%, Kaischew and Stranski %,
Becker and Doring 3, Cabrera and Burton 3233 and Frank 33,34, If the rate
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of crystal growth is controlled by surface two-dimensional nucleation the rate
is, according to Cabrera and Burton 32

J = vac exp(—(U +'4/3)/kT)

where
v = "frequency of vibration” or kT'/h = 6 X 10'? -1,
a = a molecular dimension (diameter of an ion or thickness of an adsorbed
layer),
¢ = concentration in the supersaturated solution,

U = energy of activation for diffusion,

A = y"%n/kTIna = free energy of formation of critical (circular!) surface
nucleus,

y’ = edge (free) energy per molecule of the surface nucleus,

k = Boltzmann’s constant,

T = temperature,

o = supersaturation ratio (ratio of ¢ to the solubility).

The reason why the energy of activation shall enter in the formula with
only one-third of its full value 4, is that the bottle-neck of crystal growth rate
controlled by surface nucleation is not the nucleus of maximum free energy,
because this is formed by collisions between smaller embryos, but rather the
formation of embryos of energy about one-third of the nucleus.

Usually an electrolyte crystal will grow with a measurable speed when «
is greater than about 1.01 and this observation does not agree at all with the
quoted formula. Therefore another mechanism with lower activation energy
had to be found, and as shown by Frank 3¢ this is provided by dislocations.
In the case of BaSO,, however, the rate of growth is extremely slow when « is
smaller than about 10. This indicates clearly that in BaSO, growth, surface
nucleation may have a chance to be rate determining in stead of the Frank
dislocation mechanism.

2. The surface nucleus. In order to examine this possibility we calculate
the value of 9’ consistent with the experimental J and a.

From the Cabrera-Burton-expression for J we derive

InJ = Invac — U/kT — y'2n/3k2T?In(c/s)
p = dinJ/dlnc = 1 + 9"27/3(kTne)? = 1 + n/3

where p is the order of the reaction and n the number of ions in the (equi-
librium) surface nucleus. With p = 4, T = 298°K, « = 25 we find
n=3(p—1) =9
y' =V nakTne = 2.0 X 1073 erg

3. The surface tension. It is crucial to this hypothesis whether the value of
y' is reasonable. This quantity is impossible to measure except through J,
and difficult to calculate because the structures of the surface and of the sur-
face nuclei are rather unknown. But perhaps it may be estimated from the
surface tension y by means of
Y = a¥y
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where @ = 3.5 A is the distance between the centres of two neighbouring ions
in the BaSO,-lattice. This formula corresponds to the view that the free energy
of the surface + nucleus can be calculated as the surface tension times the
total surface area including that of the vertical wall of the nucleus of heigth a.
The surface tension of an ionic crystal in vacuum may be estimated from
Born and Stern’s formula %
y = 0.1166¢2/63

(e = ionic charge, 6 = lattice constant) although it was only derived for a
NaCl-type crystal with electrostatic (Coulomb) forces of attraction and repul-
sion, and with a general repulsion between ions corresponding to a potential
energy term proportional to the minus 9th power of distance. Substituting
e = z¢, 0 = 4v/N, where z = charge number, & = electronic charge, v = molar
volume and N = Avogadro’s number we get

y = 0.02915 22¢2N /v
and for BaS0, (2 = 2, v = 51.9 cm®/mole) we obtain
y = 312 erg/cm?

This value (or, to precise 310) was claimed to agree with experiments on BaSO,
by Bruzs 3, but it is not clear from the article how the agreement is substanti-
ated.

The surface tension of BaSO, was determined by Hulett 37 and Dundon 38
from the dependence of solubility on particle size. In Hulett’s article there
were several errors in the calculation, as pointed out by Freundlich %°. (Freund-
lichs recalculated value, y = 4 000 erg/cm? is, however, also in error. The
correct value was given by Dundon % and in later editions of Freundlichs
book.4%) According to Dundon, Hulett’s measurements give 1 250 and her own
3000 erg/cm?, both numbers being rather uncertain, mainly because it is diffi-
cult to measure the particle size accurately.

Both Hulett and Dundon did only approach equilibrium through decreas-
ing concentrations (measured by electric conductance), therefore the results
may be too high by an unknown amount. There are at least two causes of
experimental errors that can keep a too high concentration constant in time,
1) the stirring motion may “*wear’’ on the crystals, so that small bits of higher
solubility are broken off leading to a stationary non-equilibrium state with
constant concentration, and 2) there may be a practical limiting supersatura-
tion for growth, below which no further precipitation occurs. At low super-
saturation 1/Ine in the formulae for nucleus size and for the nucleation free
energy becomes very large and the crystal growth becomes extremely slow.
This must also lead to higher values than p = 4 in the rate equation, at lower
concentrations than investigated in the present work. «

(One might expect that the critical size and the kinetic order of the
reaction both change gradually during the experiment; but since we are
dealing with small numbers (< 20) we must pay attention to the fact that
certain numbers (e. g. 4, 6 or 12) of ions can be arranged in configurations of
much lower energy than other numbers (e. g. 5). Therefore the critical size must
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be a discontinuous function (with large jumps) of the concentration, and may
very well be a constant in the whole range investigated kinetically).

The works of Hulett and Dundon have been criticized by several authors;
for references see the articles of Cohen and Blekkingh 4!, who tried to approach
equilibrium from “’the other side”. They dissolved finely powdered very pure
barium sulfate in conductivity water, and claim that they did not succeed in
transgressing the solubility of large crystals. (Perhaps they removed the super-
saturation during the filtrations before the final measurements?)

As a consequence of these facts we will assume that the best choice for the
surface tension of barium sulfate (even in contact with solution) is the theoreti-
cal value in vacuum 312 erg/cm2. Therefore we find

y = 312 X (3.5 X 10%)* = 3.8 x 10-1® erg

The disagreement between this value and the 2.0 X 10713 erg required by
the nucleation theory is not sufficient to reject the theory, since both values are
calculated using very simplifying assumptions.

4. The temperature dependence. We still have to check whether the tem-
perature dependence is in accord with the surface nucleation theory. The
temperature dependence is expressed in the total (apparent) heat of activation.

Assuming y’ but not s independent of 7' we derive

AH , = kdlnk, / d(1 | T) = —kdn(J | ¢#) / d(1 | T)
— U +24/3 4 (p—1)kdlns [ d(1 /T)
= kTIn(raca?t | J)—(p—1)4H, | 2
— kTIn(va | p-k,)—(p—1)AH, | 2

AH, is the heat of solution per molecule of BaSO,. With @ = 3.5 X 108
cm, $=10-% mole/em? p =4, T =298°K k, = 1.7 X 10'® cm!?/s . mole?,
AH, = 4630 cal/mole (Rossini et al.?%) we find

kTIn(va | s#-1k,) = 7.8 X 1013 erg = 11 000 cal/mole
AH , = 11 000 — 7 000 = 4 000 cal/mole

in good agreement with the measured value, 5000 cal/mole.

5. The factor 1/3 on the activation energy. As was mentioned earlier in this
paper the reason why the energy of activation for surface nucleation shall enter
in the formulae with only one-third of its value, is that the bottle-neck of
crystal growth rate controlled by surface nucleation is not the formation of
the nuclei of maximum free energy, but only of embryos with one-third of
the critical energy, because these have greater probability for encounters
with similar or larger molecules than for being dissolved. Cabrera and Burton
do not give all details of the proof of this essentiel theorem. Since however
BaSO0, provides an example of this sort of growth mechanism it is of interest
to investigate if the theorem is obeyed. We identify the one-third surface
nuclei’ with adsorbed (BaSO,),-molecules. Since adsorbed ionic species such
as Ba*t and Ba(S0,);” seem to have concentrations 10 as high in the adsorp-
tion layer as the same ions in the solution, we assume that the concentration
of (BaS0O,), is 108 times as high in the adsorption layer (of thickness 5 A)asin
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the solution. In the case subject to numerical estimates (¢, = 10~7 mole/cm3,
0°C) this amounts to

108 X 10715 = 107 mole/cm?
this is equivalent to
¢ =5 X 108 X 10-7 = 5 X 10-1% mole per cm? of the crystal surface.
The formula for collisions between like molecules in a two-dimensional

layer is -
Zy, = n*dV aRT|M

where » = number of molecules per cm? of the layer, d = collision diameter ~~
5 X 10-® ¢cm, M = molecular weight ~ 200 g/mole. Substituting » = N¢’,
dividing by N (Avogadros’ number) and multiplying by the activation energy
exponential function exp(—U/RT) for diffusion (U =~ 5 000 cal/mole) we get
the rate of collisions between (BaSO,),-molecules in the adsorption layer:

J = (Zy1/N) exp(—U/RT) = ¢'* NdV aRT/M exp(—U/RT)
= (5 X 10715)2 X 6 X 10716 = 1.5 x 10~'2 mole(BaSO,),/cm?s

™ Since this is of the same order of magnitude as the experimental rate of
growth (7 X 101! mole BaSO,/cm?s) the theorem has been verified.

VI. CONCLUSION

We have arrived at the following view of crystal growth of barium sulfate.
At low concentrations (¢ {( about 0.4 mM) the rate-determining step is the
formation of adsorbed double-molecules (BaSO,), on the crystal surface. This
is a fourth order reaction, and its rate is determined by the rate of diffusional
(or "Brownian’’) movement of the smaller ionic or molecular species (Ba*+ +-
Ba(S0,)s or BaSO, + BaSO,) against each other in an adsorbed layer on the
crystal surface.

The critical size of the surface nucleus is calculated from simplifying
assumptions to be about 9 jons; this is critical with respect to free energy,
but not to rate. In contrast to most other crystals whose rate of growth has
been investigated, BaSO, does not grow by the Frank dislocation mechanism,
and requires consequently much higher supersaturation ratios (¢ > 10) than the
latter (« > 1.01).

At high concentrations (¢ > about 0.4 mM) the rate of growth is controlled
by the diffusion of Ba** and SO;" ions from the bulk of the solution to the
crystal surfaces as found in the first part?! of this work.
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