Physical Properties of Isotopic
Forms of Azeotropic Systems Formed from Acetic Acid and
Some Tertiary Amines

K. E. Holmberg

Section for Nuclear Chemistry, Chemical Research and Production Div.,
AB Atomenergi, Stockholm, Sweden

Azeotropes of CH₃COOH and CH₃COOD with pyridine, trimethyl-
amine and triethylamine have been prepared. The boiling point
differences between the H and D forms of the azeotropes are larger
than those between the isotopic forms of pure acetic acid. The com-
position and some physical properties of the azeotropes have been
determined. Upon distillation of the azeotropes, there is some separa-
tion of the nitrogen isotopes and, possibly, also of the carbon and
oxygen isotopes of the carboxyl group in the acetic acid.

Acetic acid gives, with suitable tertiary amines, maximum boiling point
azeotropes. In these azeotropes, the strength of the chemical bond or
hydrogen bond between the components will depend on the isotopic constit-
tution of the atoms forming the bond. Different isotopic forms of the azeotropes
may therefore have different compositions (i. e. ratios amine:acid) and different
physical properties.

The azeotropes with acetic acid or acetic acid deuterated in the carboxyl
group as one component and pyridine, trimethylamine or triethylamine as the
other component have been prepared and investigated with respect to com-
position and physical properties. After Rayleigh distillation, the isotopic com-
position has been determined for other elements which may be involved in the
compound formation, viz. the nitrogen of the amine and the carbon and oxygen
of the carboxyl group.

The results are collected in Tables 1 and 2. For convenience, the following
abbreviations are used for the azeotropes: PyHAc, PyDAc, Me₃NHAc,
Me₃NDAc, Et₃NHAc, Et₃NDAc, in spite of the fact that they are not composed
of equimolecular amounts of acid and amine.

The H and D forms of the azeotropes differ rather little in composition.
Except for the case with pyridine, the azeotropes seem to contain a compound
consisting of one mole amine and four moles acetic acid. Measurements, not

Acta Chem. Scand. 13 (1959) No. 4
Table 1. Composition and physical properties of the H and D forms of azeotropes of acetic acid and tertiary amines.

<table>
<thead>
<tr>
<th></th>
<th>PyHAc</th>
<th>PyDAc</th>
<th>Me₂NHAc</th>
<th>Me₂NDAc</th>
<th>Et₂NHAc</th>
<th>Et₂NDAc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight% of HAc or DAc</td>
<td>52.2</td>
<td>51.6</td>
<td>81.2</td>
<td>81.8</td>
<td>69.9</td>
<td>70.7</td>
</tr>
<tr>
<td>Mole% of HAc or DAc</td>
<td>59.0</td>
<td>58.0</td>
<td>80.95</td>
<td>81.3</td>
<td>79.7</td>
<td>80.0</td>
</tr>
<tr>
<td>Formula</td>
<td>C₆H₅N.</td>
<td>C₆H₅N.</td>
<td>(CH₃)₂N.</td>
<td>(CH₃)₂N.</td>
<td>(C₂H₅)₂N.</td>
<td>(C₂H₅)₂N.</td>
</tr>
<tr>
<td></td>
<td>1.44 CH₃COOH</td>
<td>1.38 CH₃COOD</td>
<td>4.25 CH₃COOH</td>
<td>4.35 CH₃COOD</td>
<td>3.92 CH₃COOH</td>
<td>4.00 CH₃COOD</td>
</tr>
<tr>
<td>Boiling point at 760 mm Hg, °C</td>
<td>138.00</td>
<td>138.66</td>
<td>152.9</td>
<td>151.8</td>
<td>161.85</td>
<td>161.01</td>
</tr>
<tr>
<td>Boiling point difference, °C</td>
<td>1.34</td>
<td>1.1</td>
<td></td>
<td></td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>(dp/dT)ₜₕ, mm Hg/°C</td>
<td>21.3</td>
<td>24.1</td>
<td>27.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting point, °C</td>
<td>—51</td>
<td>glass</td>
<td>glass</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d₄ₐ, g/ml</td>
<td>1.03678</td>
<td>1.04114</td>
<td>1.03887</td>
<td>1.05365</td>
<td>1.01638</td>
<td>1.02834</td>
</tr>
<tr>
<td>nₐₐ, centipoise</td>
<td>2.21</td>
<td>2.06</td>
<td>11.35</td>
<td>11.47</td>
<td>14.47</td>
<td>14.59</td>
</tr>
<tr>
<td>nₐD</td>
<td>1.4520</td>
<td>1.4510</td>
<td>1.4087</td>
<td>1.4080</td>
<td>1.4218</td>
<td>1.4212</td>
</tr>
</tbody>
</table>
Table 2. Ratio of the vapour pressures of H and D forms of azeotropes and separation factors for other isotopes upon distillation. The errors given refer to the mass spectrometric measurements.

<table>
<thead>
<tr>
<th></th>
<th>PyHAc at 138°C</th>
<th>Me₂NHaC at 153°C</th>
<th>Et₃NHaC at 162°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>p(D)/p(H)</td>
<td>1.038</td>
<td>1.032</td>
<td>1.030</td>
</tr>
<tr>
<td>(¹⁴N/¹²N) sub{vap}{Liq}</td>
<td>1.0034 ± 0.0012</td>
<td>1.0097 ± 0.0012</td>
<td>1.0075 ± 0.0012</td>
</tr>
<tr>
<td>(¹³O/¹⁴O) sub{vap}{Liq}</td>
<td>1.0007 ± 0.0009</td>
<td>1.0010 ± 0.0009</td>
<td>1.0018 ± 0.0009</td>
</tr>
<tr>
<td>(¹³C/¹²C) sub{vap}{Liq}</td>
<td>1.0017 ± 0.0006</td>
<td>1.0005 ± 0.0006</td>
<td>1.0012 ± 0.0006</td>
</tr>
</tbody>
</table>

reproduced here, of the density and viscosity of mixtures of Py and HAc have shown a maximum deviation from linear relationship at about the composition Py.4HAc. It is therefore possible that the liquid pyridine-acetic acid azeotrope is a mixture of a compound Py.4HAc together with free, or less strongly bound, pyridine.

The ratio of the vapour pressures of the H and D forms of an azeotrope at the boiling point (b.p.) of the H form is larger than the corresponding ratio for acetic acid at its normal b.p. Rabinowitsch et al.¹ have investigated the vapour pressures of CH₃COOH and CH₃COOD at different temperatures. From their results, p(CH₃COOH)/p(CH₃COOD) is 1.017 at 118°C and passes through a maximum of 1.032 at about 50°C. They give a qualitative explanation of their results.

Similar points of view may perhaps apply for the azeotropes but it is felt that a discussion is of no avail so long as we do not know the composition and amounts of the various possible associates occurring in the liquid and the vapour. An investigation to clarify this situation was beyond the scope of the present work.

The ratio of the vapour pressures of the H and D forms of an azeotrope is not to be confused with the separation factor α for H/D on distillation of the azeotrope, α = (H/D) sub{vap}/(H/D) sub{Liq}. The two quantities may differ since the composition of the H and D forms of the azeotrope differ, since part of the acetic acid distills as double molecules and also since the vapour phase contains a certain amount of amine.

The separation factors for the N isotopes are quite large considering the rather high distillation temperatures. The low value for the PyHAc azeotrope may be explained by the assumption above that only part of the pyridine is strongly bound by the acetic acid as Py.4HAc. If all of the Py had been bound in this way, the separation factor would be expected to be

\[1 + 0.0034 \left(\frac{4}{1.44} \right) = 1.0094 \]

Acta Chem. Scand. 13 (1959) No. 4
in fair agreement with the values obtained for the other azoetropes. Of course the different structure of Py compared with the other tertiary amines may offer another explanation.

The separation factors for 13C and 18O are very small — of the same order as the errors of the mass spectrometer measurements. However, since they occur in the same direction in all cases, they may have some real meaning. These factors indicate that the C and O atoms of the carboxyl group are very little influenced by the formation of a compound between HAc and an amine.

EXPERIMENTAL

Preparations

Deuterated acetic acid (CH$_3$COOD) was prepared from acetic anhydride and D$_2$O (99.7 %). The acetic anhydride was purified by distillation through a 1 meter column with glass helices and reacted with the calculated amount of D$_2$O. The product was distilled using the 1 meter column to give a product with a 0.1°C boiling point range. The boiling point was compared with that of ordinary CH$_3$COOH prepared in the same way. HAc b.p.$_{10}$ = 117.70°C, DAc b.p.$_{10}$ = 116.80°C. In another experiment, however, a b.p. difference of only 0.63°C was found.

The azoetropes. Pyridine was mixed with an equal weight of HAc or DAc and the mixture was then fractionated to give a product with a 0.1—0.2°C b.p. range. Et$_3$NHAc and Et$_4$NDAc were prepared in a similar way.

HAc was added to 25 % aqueous Me$_4$N, water was distilled off and the remaining Me$_4$NHAc fractionated to a narrow b.p. range.

Me$_4$N was expelled by heating from its 25 % aqueous solution. The product was dried with solid NaOH and absorbed in anhydrous DAc. The resulting Me$_4$NDAc was fractionated to a narrow b.p. range.

Analyses

A weighed amount of azoetrope dissolved in water was washed through a cation exchanger in the H$^+$ form. The HAc in the eluate was titrated with standard alkali.

Physical properties

Boiling points were determined in a special all-glass apparatus with thermometer pocket and reflux cooler. Mercury thermometers were used and the pockets were filled with mercury. The H and D forms of the azoetrope were measured simultaneously. Stem and pressure corrections were applied. There may have been some uncertainty in these corrections and thus the absolute values of the boiling points may not be very exact. The b.p. differences, however, are probably correct to ±0.02°C. The rate of change of b.p. with pressure has been determined by a direct comparison with the b.p. of water at three pressures near atmospheric, generally p, $p + 20$, and $p + 40$ mm Hg.

The melting point of PyHAc was determined on a small sample in a test tube and the value is thus rather rough. It was taken as the temperature at which the greater part of the sample had passed into the liquid state. Me$_4$NHAc and Et$_4$NHAc could not be made to crystallize. They formed glasses which began to soften at about -100°C.

Densities were determined with a 10 ml pycnometer at 25.00°C.

Viscosities were determined with a probable error of less than 1 % using an Ostwald viscometer.

Acta Chem. Scand. 13 (1959) No. 4
Rayleigh distillations

A 100—200 ml sample was distilled from a 250 ml flask surrounded by a vapour thermostat at a few (1—4) degrees above the b.p. of the azeotrope. The bottom of the flask rested on an asbestos plate with a hole through which the flask was heated with a small flame. The heating was such that the distillation occurred without the formation of bubbles. The vapour thermostat prevented refluxing from the walls of the flask and from the tube leading to the condenser. 5—10 % of the total amount were taken as a first distillate and about an equal amount was left behind as residue. The first distillate and the residue were analysed for the isotope abundance of 15N, and of 13C and 18O in the carboxyl group of the acetic acid.

The precautions described above were such as to minimize all possibilities for introducing errors giving too high values for the separation factor. Several tests with $\text{H}_2\text{O}—\text{HDO}$ mixtures gave separation factors of 1.0222—1.0235 instead of the accepted value of 1.026 i.e. the separation obtained was only 85—90 % of the expected value. Similar errors may occur in the case of the azeotropic systems. No corrections have been introduced, however, since it is not certain that the errors will be of the same magnitude as those in the case of water.

Preparations for isotopic analyses

The N of the amine was transformed by Kjeldahl digestion to NH_3 and then to H_2NCl. Pyridine was digested for several days in the presence of mercury sulphate to insure complete decomposition.

Calculated amounts of Ba(OH)_2 solution and sample were evaporated and dried to form anhydrous Ba acetate. This was pyrolyzed in a slow stream of nitrogen to give BaCO_3 which was reacted in an evacuated tube with concentrated (98 %) sulphuric acid. The CO_2 formed was purified by freezing out with liquid air and analyzed for 13C and 18O.

Acknowledgement. Thanks are due to Mr. R. Cedenholt for assistance with the experimental work and to AB Atomenergi for permission to publish the results. The isotope abundance measurements were performed by the Mass Spectrometer Laboratory, Karolinska Institutet, Stockholm.

REFERENCE

Received January 31, 1959.

Acta Chem. Scand. 13 (1959) No. 4