Short Communications

The Crystal Structure of $\text{K}_3\text{V}_2\text{O}_14$ *

ANN MARIE BYSTROM and HOWARD T. EVANS, Jr.

Geological Survey of Sweden, Stockholm 50, Sweden, and

As a part of a study of the system $\text{K}_3\text{O} - \text{V}_2\text{O}_5 - \text{H}_2\text{O}$ at the U.S. Geological Survey, Washington, D.C., the crystal structure of $\text{K}_3\text{V}_2\text{O}_14$ has been worked out. $\text{K}_3\text{V}_2\text{O}_14$ crystallizes in red hexagonal prisms by rapid evaporation of dilute solutions of V_2O_5 and K_3O above 40°C. (R. Marvin, U.S. Geological Survey, written communication.) The crystals, which are often twinned, show strong dichroism, brown to dark red, with absorption $\varepsilon < \omega$; ω = dark red and ε = greenish yellow. They are optically uniaxial, negative, with refractive indices $\omega = 2.42$ and $\varepsilon = 1.748$. The habit clearly indicates that the point group symmetry is ditrigonal pyramidal, C_{3v}.

From photographs of the (hkl), (hhl), and $(h0l)$ zones, made with a Buerger precession camera and MoK$_\alpha$ radiation, and the habit of the crystal, the space group was established as $P\bar{3}1m$ (D_{3d}). The cell dimensions were determined with an x-ray single crystal goniometer using a scintillation counter. The following values were obtained:

\[a = 8.6796 \pm 0.0020 \, \text{Å} \quad \text{MoK}_\alpha = 0.70926 \, \text{Å} \]
\[c = 4.9914 \pm 0.0008 \quad \text{MoK}_\alpha = 0.71354 \]
\[V = 325.65 \, \text{Å}^3 \quad \text{MoK}_\beta = 0.63225 \]

Density (observed) = 3.01 g cm$^{-3}$
Density (calculated) = 3.03 g cm$^{-3}$.

Intensities were recorded for (hkl), $(hk1)$, and $(h0l)$ zones on a Weissenberg camera using unfiltered MoK radiation. The multiple film technique was used and intensities were measured by visual comparison with a calibrated strip.

* Publication authorized by the Director, U.S. Geological Survey.

Fig. 1. Electron density projection of $\text{K}_3\text{V}_2\text{O}_14$.
$q(x, y)$. Dotted contour, 4 electrons/Å2; contour interval 4 electrons/Å2.
In Fig. 1 the electron density projection $\rho(x,y)$ is illustrated.

The five vanadium atoms lie very nearly in the same z-plane forming almost regular pentagons. The fourteen oxygen atoms are bound to the vanadium atoms in rather an unusual way, reminiscent of the bonding in V_2O_5 (Byström et al.) and $KVO_3 \cdot H_2O$ (Christ et al.). They form nearly square pyramids around the V_2 atoms and trigonal pyramids around the V_1 atoms, the pyramids all with apices pointing in the same direction along the c-axis and joined by sharing neighboring basal corners. Each hollow space resulting from the five-ring configuration is occupied by a potassium atom, placed about half way between the layers. Each potassium is surrounded by 10 oxygens, five from the apex oxygens of the polyhedra in the lower layer and five from basal corners of polyhedra in the layer above.

Owing to difficulties involved in getting a pure sample for chemical analysis, the cell content was uncertain at the outset. Thus, all attempts to interpret the Patterson function $P(u,v)$ in terms of 3K and 6V atoms failed. A solution was readily found for 3K and 5V atoms, however, and the resulting model was confirmed by the Patterson $P(u,w)$. The oxygen locations were then found mainly by space reasoning. From the preliminary positions of the atoms, electron density maps of the functions $\rho(x,y)$ and $\rho(x,z)$ were prepared, and by successive steps of refinement, the following coordinates were determined:

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0.605</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V₁</td>
<td>0.231</td>
<td>0</td>
<td>0.471</td>
</tr>
<tr>
<td>O₁</td>
<td>0.240</td>
<td>0</td>
<td>0.782</td>
</tr>
<tr>
<td>O₂</td>
<td>0.638</td>
<td>0</td>
<td>0.367</td>
</tr>
<tr>
<td>O₃</td>
<td>0.469</td>
<td>0.177</td>
<td>0.366</td>
</tr>
</tbody>
</table>

For these coordinates the reliability factors and temperature coefficients have been found as follows:

(hk0) (63 obs. data) $R = 0.116$, $B = 1.59 \; \text{Å}^2$;
(hkl) (51 obs. data) $R = 0.145$, $B = 0.77$;
(h0l) (93 obs. data) $R = 0.164$, $B = 0.90$.

Received January 14, 1959.