On the Sulfides, Selenides and Tellurides of Palladium ### FREDRIK GRØNVOLD and ERLING RØST Kjemisk Institutt A. Universitetet i Oslo, Blindern, Norway The phase relationships in the systems palladium sulfur, palladium selenium and palladium tellurium have been studied by means of X-rays. Density determinations and magnetic susceptibility measurements have also been carried out. In the Pd-S system five intermediate phases were identified: - 1. Pd₄S, with tetragonal structure, a = 5.1147 Å, c = 5.5903 Å. The observed density is 10.27 g cm⁻³. - 2. Pd_{2.2}S, which is only present in quenched preparations. Its structure is unknown. - Pd_{3.9}S, with cubic structure, a = 8.9300 Å and a density of 8.67 g cm⁻³. PdS, with tetragonal structure. The redetermined lattice constants - are a = 6.4287 Å, c = 6.6082 Å. - 5. PdS₂, with orthorhombic structure and unit cell dimensions a == 5.460 Å, b = 5.541 Å, c = 7.531 Å. - In the Pd-Se system four intermediate phases were identified: 1. Pd₄Se, isomorphous with Pd₄S, a = 5.2324 Å, c = 5.6470 Å. The observed density is 10.74 g cm⁻¹. - 2. Pds. Se, with unknown structure. - 3. $Pd_{1.1}Se$, with cubic structure and lattice constant a = 10.604 Å. It has a density of 8.30 g cm⁻³. - 4. PdSe, isomorphous with PdS, and with lattice constants a = 5.741 Å, b = 5.866 Å, c = 7.691 Å. The observed density is 6.77 g cm⁻³. - In the Pd-Te system six intermediate phases were identified: 1. Pd₄Te, with cubic structure, a=12.674 Å. The observed density is 11.40 g cm⁻³. The structure might be looked at as an approximately body-centered arrangement of palladium atoms of which one fifth has been substituted by tellurium atoms. - 2, 3 and 4. Three phases have been identified in the range between Pd₄Te and PdTe. Their approximate compositions are Pd₄Te, - Pd_{3,5}Te and Pd₂Te. 5. PdTe, with structure of the NiAs-type. The redetermined lattice constants are a = 4.1521 Å, c = 5.6719 Å. - 6. PdTe₃, with structure of the Cd(OH)₂-type. The redetermined lattice constants are a=4.0365 Å, c=5.1262 Å. No extended mutual solubility of PdTe and PdTe, was observed. The magnetic susceptibility of Pd₄S,Pd_{2.2}S,Pd₄Se, Pd_{1.1}Se, PdSe₂ and Pd₄Te has been measured between —183° and 450°C. The compounds Pd₄S, Pd₄Se and Pd₄Te are weakly ferromagnetic with Curie temperatures in the range 20° to 300°C. Above this temperature they have almost zero magnetic susceptibility like the compounds Pd_{2.2}S, Pd_{1.1}Se and PdSe₂. Palladium monosulfide was prepared by direct combination of the elements by Berzelius 1 in 1813. It has been studied by many investigators since that time, and the results have been reviewed by Gmelin². Three other palladium sulfides, Pd₂S, Pd₃S₄ and PdS₂, were obtained by Schneider 3. The existence of the compound Pd₂S has later been confirmed by Petrenko-Kritschenko 4 and Roessler 5. Furthermore, the compound Pd₄S exists according to Maxted 6, and the compound Pd₃S according to Iwanoff 7. The region Pd to PdS of the palladium sulfur system was studied by Weibke and Laar 8 by means of thermal, metallographic and X-ray methods. The compounds Pd and PdS were found in slowly cooled samples, and in addition, a phase with composition around 73.5 atomic per cent palladium (Pd_{2.8}S) which disproportionated into Pd₄S and PdS at temperatures below 554°C. A tensimetric analysis of the sulfur-rich part of the system was carried out by Biltz and Laar 9. No intermediate compounds between PdS and PdS₂ were found. The crystal structure of PdS was determined by Gaskell 10 by means of single crystals. The structure of the other palladium sulphides are unknown. Palladium monoselenide was obtained by Rössler 11 as an insoluble product after heating some precipitates containing palladium and selenium and treating them with nitric acid. The existence of PdSe has later been confirmed by Roessler 5 and by Moser and Atynski 12. Roessler 5 also found a phase with composition Pd Se by heating dichlorodiammine palladium with selenium. Thomassen 13 did not succeed in preparing stoichiometric palladium diselenide from the elements. Laue photographs taken of the crystals showed only twofold symmetry. PdSe2 was later prepared by Wöhler, Ewald and Krall 14 by heating palladium dichloride with excess selenium. As a result of microscopic examination they concluded that the crystals were hexagonal and of the $Cd(OH)_2$ -(C6)-type. Palladium monotelluride was prepared by Tibbals, Jr. 15 by precipitation, and later by Thomassen 13 by heating a mixture of the elements. In the same way Thomassen prepared palladium ditelluride. By means of X-ray powder photographs he found that PdTe had a hexagonal structure of the NiAs- (B8-) type, and that $PdTe_2$ had a structure of the $Cd(OH)_2$ -(C6-) type. ### **EXPERIMENTAL** The palladium metal used in this study was kindly placed at our disposal by Falconbridge Nikkelverk A/S, Kristiansand S. To remove adsorbed hydrogen, the metal was heated at 900°C at a pressure of the order 10^{-6} cm Hg. A spectrographic analysis showed that Ag was present in the order of 0.01 % and Cu, Mg, Fe, Si and Na in less than 0.01 % Sulfur from Schering-Kahlbaum A.G. (Sulfur cryst. puriss.) was purified by double distillation in a silica apparatus. Only the middle fractions were used. The highly purified selenium was a gift from Bolidens Gruvaktiebolag, Sweden. It carried the analysis: 0.0002 % Cu, 0.0007 % Fe, 0.003 % Te, 0.01 % S and 0.003 % non volatile matter. Tellurium from The British Drug Houses Ltd. was subjected to vacuum distillation in the control of silica vessels. According to the spectrographic analysis it contained less than 0.01 % Fe and only traces of Al, Mg and Pb. This analysis and the palladium analysis were kindly carried out by siv.ing. S. Rutlin, Sentralinstitutt for Industriell Forskning, Blindern. Alloys were prepared by heating mixtures of palladium and sulfur, selenium or tellurium, respectively, in the stoichiometric ratio 1:1 in evacuated and sealed silica tubes. After being heated for a few days at temperatures ranging between 500° and 800°C the samples were cooled and finely ground. Alloys with other desired compositions were obtained by adding Pd, S, Se or Te in the right proportions to the mono compounds and heating the samples for some days at 600°C. Most of the samples were afterwards annealed at temperatures ranging between 250° and 650°C and cooled slowly to room temperature. In some cases the samples were quenched in ice water. During some of the heat treatments single crystals were formed. X Ray single crystal photographs were taken in an oscillation camera with 6.0 cm diameter and a Weissenberg camera with 5.73 cm diameter. The powdered samples were investigated by X-rays in cameras with 11.46 cm effective diameter and asymmetric film mounting. Lattice constants are expressed in Angström units on basis of the wave lengths $\lambda \text{Cu}Ka_1 = 1.54051$ Å, $\lambda \text{Fe}Ka_1 = 1.93597$ Å and $\lambda \text{Cr}Ka_1 = 2.28962$ Å. Results from earlier investigations, expressed in kX, have been transformed to Å by multipli- cation by the factor 1.00202. Lattice constants of the cubic phases were found by extrapolation according to the method given by Nelson and Riley 16. In this way the lattice constant of palladium was method given by Nelson and Kiley **. In this way the lattice constant of paladium was determined as a=3.8902 Å, in perfect agreement with the high precision value a=3.89022 Å given by Owen and Yates ¹⁷ for spectrographically pure palladium at 18°C. The density of the samples was determined by the pycnometric method at 25°C with kerosene as displacement liquid. To remove gases adsorbed by the sample, the pycnometer was filled under vacuum with kerosene. Each sample weighed around 1.5 g. The magnetic susceptibility of the samples was measured by the Gouy method at three different maximum field strengths at -183°, -78°, 20°, 150°, 300° and 450°C. The samples were filled in thin walled silica tubes of about 0.10 cm internal diameter and to a height of about 8.5 cm. #### X-RAY RESULTS ### A. Palladium sulfides In the system palladium sulfur five intermediate phases were identified by means of X-rays: Pd₄S, Pd_{2.2}S, PdS, PdS₂ and a high temperature phase with composition around Pd_{2.8}S. PdS and samples richer in palladium were brittle and of gray, metallic color. The existence of a compound Pd₂S₄, claimed by Schneider 3, was not confirmed, while all the other palladium sulfides described earlier exist if one associates the compound Pd₃S by Iwanoff⁷ with Pd_{2.8}S, and Pd₂S by Schneider³, Petrenko-Kritschenko ⁴ and Roessler ⁵ with The lattice constant found for palladium in equilibrium with Pd₄S was equal to that of pure palladium within the limits of experimental error. This confirms the observations by Jedele 18 and Weibke and Laar 8 that sulfur is practically insoluble in solid palladium. The Pd₄S phase. The Pd₄S phase could be indexed on basis of a tetragonal unit cell with dimensions: $$a = 5.1147 \text{ Å}, \qquad c = 5.5903 \text{ Å}, \qquad c/a = 1.0930.$$ Results of the measurements are listed in Table 1. The systematic missing reflections are of the type h h l with l=2n+1 and h 0 0 with h=2n+1. They characterize the space group $P = \frac{1}{4} 2_1 c$ (D_{2d}^4). The Pd_4S phase is isomorphous with the Pd Se phase. The density of Pd₄S was determined to be 10.27 g cm⁻³ at 25°C, which gives a unit cell content of eight (7.90) palladium and two (1.97) sulfur atoms. Table 1. Powder photograph data of Pd₄S annealed at 450°C, CuKa radiation. The a₅ reflections have been omitted. | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | |------------------------|---------------------------|-----|--------------|---------------------------|-------|--------------|---------------------------|------------| | vw | 421 | 101 | m | 4175 | 214 | vw | 7575 | 424 | | w | 763 | 002 | vw | 4541 | 420 | st | 7610 | 513 | | st | 913 | 200 | vw | 4622 | 412 | w | 7699 | 325 | | st | 992 | 102 | m | 4663 | 323 | w | 7743 | 206 | | m | 1101 | 201 | m | 4732 | 421 | w | 7903 | 531 | | vst | 1139 | 210 | w | 4847 | 332 | m | 7969 | 216 | | \mathbf{vst} | 1219 | 112 | w | 5084 | 304 | m. | 8014 | 442 | | st | 1330 | 211 | vw | 5306 | 422 | vw | 8285 | 523 | | m | 1672 | 202 | w | 5571 | 413 | w | 8357 | 601 | | \mathbf{w} | 1818 | 220 | vw | 5658 | 205 | st | 8376 | 405 | | st | 1899 | 212 | st | 5862 | [501 | m | 8472 | 532 | | w | 1940 | 103 | 80 | 0002 | l 413 | m | 8580 | ,611 | | $\mathbf{v}\mathbf{w}$ | 2240 | 301 | m | 5890 | 1 215 | vw | 8649 | 226 | | $\mathbf{v}\mathbf{w}$ | 2277 | 310 | 1111 | | \ 501 | w | 8708 | 504 | | \mathbf{m} | 2468 | 311 | m | 5994 | 324 | W | [. | 1 434 | | $\mathbf{v}\mathbf{w}$ | 2579 | 222 | m | 6093 | 511 | vw | 8876 | 306 | | m | 2808 | 302 | vw | 6248 | 423 | w | 8933 | 514 | | $\mathbf{v}\mathbf{w}$ | 2847 | 213 | w | 6443 | 502 | w | 9102 | 316 | | w | 2953 | 320 | , w | 0440 | 1 432 | w | 9152 | 612 | | w | 3035 | 312 | vw | 6580 | 520 | m | 9260 | 621 | | \mathbf{m} | 3143 | 321 | vw | 6658 | 512 | st | 9281 | 425 | | $\mathbf{v}\mathbf{w}$ | 3269 | 104 | m | 6773 | 521 | w | 9421 | 533 | | \mathbf{m} | 3500 | 114 | w | 6841 | 006 | m, | 9487 | 541 | | m | 3718 | 322 | w | 6902 | 412 | w | 9612 | 520 | | \mathbf{m} | 3824 | 401 | vw | 7127 | 334 | m | 9782 | 326 | | w | 3866 | 410 | vw | 7268 | 440 | m | 9830 | 622 | | \mathbf{w} | 3951 | 204 | | | [503 | | 1 1 | | | \mathbf{m} | 3982 | 313 | w | 7385 | 1 430 | İ | | | The Pd_{2.8}S phase. When samples with composition Pd₃S were quenched from 580° and 600°C their X-ray photographs showed the presence of a phase which was not found in the furnace cooled samples. Weak reflections from the Pd₄S phase were found in the quenched Pd₃S sample, while rather strong reflections from the Pd_{2.2}S phase were found in the quenched Pd_{2.5}S sample. The high temperature phase thus seems to have a composition in the vicinity of Pd_{2.8}S. This agrees well with the results of Weibke and Laar ⁸. We have not yet been able to determine the structure of this phase and only its characteristic reflections are listed in Table 2. The Pd_{2.2}S phase. In contrast to the results by Weibke and Laar, another intermediate phase between Pd₄S and PdS was found both in slowly cooled samples and in samples quenched from 600°C. The composition of the phase is probably close to Pd_{2.20}S as the powder photograph of this sample contains no lines from other phases, while that of Pd_{2.25}S shows some weak Pd₄S lines and that of Pd₂S shows many lines from the PdS phase. The powder photograph of $Pd_{2.20}S$ could be indexed as cubic with lattice constant a=8.9300 Å. No significant variation in lattice constant with composition was observed, and in Table 3 is given the indexing for the $Pd_{2.26}S$ sample. | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in $ extbf{\AA}$ | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in Å | $I_{ m obs}$ | sin²⊕ · 10⁴ | d in Å | |--------------|---------------------------|----------------------|--------------|---------------------------|--------|--------------|-------------|--------| | m | 314 | 4.341 | vw* | 1216 | 2.209 | vw* | 2464 | 1.552 | | w | 474 | 3.539 | m | 1250 | 2.178 | w | 2617 | 1.506 | | m | 643 | 3.037 | vst | 1332 | 2.110 | w | 2687 | 1.486 | | vw | 764 | 2.788 | st | 1413 | 2.049 | vw* | 2808 | 1.454 | | w* | 908 | 2.556 | w | 1472 | 2.008 | vw | 3041 | 1.397 | | st | 954 | 2.494 | vw | 1724 | 1.855 | vw | 3171 | 1.368 | | st. | 985 | 2.452 | vw | 1817 | 1.807 | m | 3450 | 1.311 | | st | 1072 | 2.353 | vw* | 1898 | 1.768 | w | 3529 | 1.296 | | w* | 1134 | 2.287 | m | 1965 | 1.738 | w | 3726 | 1.262 | | m | 1173 | 2.249 | vw | 2279 | 1.614 | w | 4351 | 1.168 | Table 2. Characteristic low angle reflections and interplanar spacings of the $Pd_{1.8}S$ phase as found from a powder photograph of $Pd_{1}S$ quenched from 600°C, CuKa radiation. Reflections $h \ k \ l$ of the type h+k+l=2n+1 are missing, which is characteristic of a body centered unit cell. The experimentally found density of $\mathrm{Pd}_{2.20}\mathrm{S}$ is 8.67 g cm⁻³ and the unit cell accordingly contains 30.7 palladium and 13.9 sulfur atoms. The PdS phase. A redetermination of the lattice constant of the tetragonal PdS phase gave the values: $$a = 6.4287 \text{ Å},$$ $c = 6.6082 \text{ Å},$ $c/a = 1.0279.$ Table 3. Powder photograph data of Pd_{1.18}S annealed at 300°C, CuKa radiation. | $I_{ m obs}$ | sin²⊕ · 10⁴ | $h^2+k^2+l^2$ | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | $h^2 + k^2 + l^2$ | $I_{ m obs}$ | sin ² • 10 ⁴ | $h^2+k^2+l^2$ | |--------------|-------------|---------------|------------------------------|---------------------------|-------------------|------------------------|------------------------------------|---------------| | w | 300 | 4 | st | 2835 | 38 | m | 6409 | 86 | | st | 449 | 4
6 | $\mathbf{v}\mathbf{w}$ | 2982 | 40 | vw | 6707 | 90 | | w | 748 | 10 | vw | 3135 | 42 | w | 7002 | 94 | | m | 898 | 12 | w | 3277 | 44 | \mathbf{w} | 7152 | 96 | | vst | 1045 | 14 | m | 3430 | 46 | m | 7301 | 98 | | vw* | 1137 | 1 1 | w | 3580 | 48 | vw | 7596 | 102 | | m | 1193 | 16 | \mathbf{m} | 3726 | 50 | \mathbf{m} | 7747 | 104 | | vw* | 1216 | ļ . | st | 4023 | 54 | \mathbf{st} | 8042 | 108 | | st | 1347 | 18 | \mathbf{m} | 4321 | 58 | w | 8190 | 110 | | w | 1493 | 20 | $\mathbf{v}\mathbf{w}$ | 4618 | 62 | \mathbf{w} | 8489 | 114 | | w | 1643 | 22 | m | 4915 | 66 | $\mathbf{v}\mathbf{w}$ | 8635 | 116 | | m | 1790 | 24 | vw | 5672 | 68 | w | 8784 | 118 | | vw* | 1898 | | vw | 5220 | 70 | vw | 8931 | 120 | | m | 1944 | 26 | w | 5368 | 72 | st | 9082 | 122 | | w | 2237 | 30 | m | 5514 | 74 | \mathbf{st} | 9376 | 126 | | m | 2390 | 32 | m | 5667 | 76 | m | 9525 | 128 | | m | 2533 | 34 | $\operatorname{\mathbf{st}}$ | 5817 | 78 | w | 9673 | 130 | | w | 2687 | 36 | vw | 6107 | 82 | w | 9821 | 132 | ^{*} Reflections from the Pd₄S phase. ^{*} Reflections probably from the Pd₄S phase. The determination by Bannister ¹⁹ gave a = 6.44 Å, c = 6.60 Å and the values reported by Gaskell ¹⁰, who determined the atomic arrangement in PdS, were a = 6.44 Å, c = 6.64 Å. The complete indexing of a powder photograph of PdS taken with chromium radiation is given in Table 4. | $I_{ m obs}$ | $\sin^2\!\Theta\cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | sin ² @ · 104 | hkl | |------------------------|----------------------------|-----|--------------|---------------------------|-------|--------------|--------------------------|-------| | vw | 936 | 111 | w | 4432 | 321 | vw | 8552 | 511 | | $\mathbf{v}\mathbf{w}$ | 1273 | 200 | w | 4815 | 004 | w | 8778 | 205 | | st | 1521 | 102 | m | 5085 | 400 | st | 8929 | 324 | | \mathbf{st} | 1573 | 201 | vw | 5399 | 410 | m. | 9050 | 423 | | \mathbf{st} | 1592 | 210 | vw | 6297 | 402 | m | 9093 | 215 | | m | 1840 | 112 | vw | 6361 | 420 | | 9132 | 6 502 | | vst | 1893 | 211 | w | 6407 | 214 | st | 9132 | 432 | | w | 2794 | 212 | w | 6611 | 412 | vw | 9200 | ` 520 | | m | 3745 | 222 | vw | 6661 | 421 | m. | 9449 | 512 | | w | 3975 | 203 | w | 6844 | 323 | m | 9497 | 521 | | w | 4061 | 302 | vw | 6921 | 332 | vst | 9875 | 404 | | w | 4130 | 320 | | 0000 | 501 | | | | | st | 4294 | 213 | vw | 8238 | 431 | | 1 1 | | | st | 4376 | 312 | vw | 8417 | ` 333 | 1 | 1 | | Table 4. Powder photograph data of PdS annealed at 300°C, CrKa radiation. The PdS₂ phase. Experiments to get the PdS₂ phase by heating the components were not entirely successful. Even after treating PdS with excess of sulfur for six months at various temperatures between 300° and 500°C, reflections from unreacted PdS could still be seen on the X-ray photographs together with those from another phase, probably PdS₂. It was then tried to prepare PdS₂ by the method of Wöhler, Ewald and Krall ¹⁴ by heating palladium dichloride with excess of sulfur for four days at 450°C in an evacuated silica tube. The product was obtained in form of a black, crystalline powder after washing with carbon disulfide. The X-ray photographs resembled the earlier ones, but all the reflections from PdS had disappeared, and the sample was supposedly pure PdS₂. The powder photograph could be indexed as orthorhombic with unit cell dimensions: $$a = 5.460 \text{ Å},$$ $b = 5.541 \text{ Å},$ $c = 7.531 \text{ Å},$ $a:b:c = 0.9854:1:1.3591.$ In Table 5 are found the results of film measurements and indexing. According to Biltz and Laar ⁹ the density of PdS₂, synthesized from PdCl₂ and sulfur, is 4.833 g cm⁻³. The unit cell should then contain four (3.883) formula units of PdS₂. The systematic missing reflections on the powder photograph seem to be the same as those for the PdSe₂ phase. Since the number of atoms in the unit cell and the axial ratios are about the same as found for PdSe₂, these phases are probably isomorphous. | $I_{ m obs}$ | sin ² 0 · 104 | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | sin ² 9 · 10 ⁴ | hkl | |--------------|--------------------------|------------|--------------|---------------------------|---|--------------|--------------------------------------|--------------| | vst | 674 | 002 | w | 3885 | 024 | vw | 7203 | 026 | | vst
vw | 798
987 | 111
102 | w | 3919
4014 | 204
130 | w | 7214 | 135
206 | | st | 1238 | 020 | w | 4228 | 214 | vw | 7288 | 315 | | st
vw | 1273
1403 | 200
021 | m | 4566 | \ 321
133 | w | 7543
7684 | 044
404 | | w | 1577 | 210 | m, | 4646 | 313 | vst | 8210 | 151 | | w
vw | 1720
1746 | 121
211 | st
m | 4778
5145 | $\begin{array}{c} 115 \\ 224 \end{array}$ | vst | 8340 | 511
(226 | | st | 1899 | 022 | vw | 5560 | 323 | m. | 8437 | 432 | | st
vst | 1941
2128 | 202
113 | | | (042
(125 | st | 8723 | 117 | | st | 2502 | 220 | vw | 5699 | 402 | m | 8791 | 244 | | w | 2665
2732 | 004
023 | m | 5751 | \ 215
331 | m, | 8898 | 250
424 | | vw | 3073 | 213 | w | 6169 | 240 | m | 9435 | 153 | | st
vst | 3159
3244 | 222
131 | w | 6282 | { 420
106 | st
st | 9653
9706 | 513
335 | | st | 3317
3505 | 311
302 | m | 6824
6936 | 242
422 | vst | 9912 | 440 | | vw
vw | 3740 | 132 | m
m | 7087 | 333 | | | | Table 5. Powder photograph data of PdS₂ annealed at 450°, FeKa radiation. ### B. Palladium selenides Four intermediate phases were identified in the palladium selenium system: Pd₄Se, Pd_{2.8}Se, Pd_{1.1}Se and PdSe₂. The phases were all obtained both in quenched and slowly cooled preparations. They were of gray, metallic color and also brittle, except PdSe₂ which formed soft, platelike crystals. The Pd_{2.8}Se phase was not found by earlier investigators and the Pd_{1.1}Se phase was given the composition PdSe by Roessler ⁵, Rössler ¹¹ and Moser and Atynski 12. The Pd₄Se phase. Powder photographs of Pd₄Se showed great similarities with those of Pd₄S and could be indexed as tetragonal. The unit cell dimensions were found to be: $$a = 5.2324 \text{ Å}, \qquad c = 5.6470 \text{ Å}, \qquad c/a = 1.0792.$$ A record of the interferences which occur on a powder photograph of Pd₄Se taken with copper radiation is found in Table 6. After annealing a Pd_4Se sample at 450°C for forty-five days some small crystals had been formed. Weissenberg photographs with the b-axis as rotation axis confirmed that the systematic missing reflections were of the type $h \ h \ l$ absent when l = 2n + 1 and $h \ 0 \ 0$ absent when h = 2n + 1. The characteristic space group is thus $P \ \overline{4} \ 2_1 c \ (D_{2d}^4)$ as found for Pd_4S . The pycnometric density of Pd₄Se is 10.74 g cm⁻³ which means that eight (7.95) palladium and two (1.99) selenium atoms are present in the unit cell. A discussion of the atomic arrangement in the two isomorphous phases Pd₄S and Pd₄Se will be given in a later paper. | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | |------------------------|---------------------------|---|--------------|---------------------------|---|--------------|---------------------------|--------------| | vw | 437 | 110 | w | 3569 | 322 | m | 7473 | 325 | | vw | 746 | 002 | m | 3661 | 401 | vw | 7563 | 531 | | m
st | 872
965 | $\begin{array}{c} 200 \\ 102 \end{array}$ | st | 3850 | { 313
204 | w
m | 7685
7785 | 442
216 | | st | 1056 | 201 | w | 4066 | 214 | m | 7965 | 523 | | vst
vst | 1092
1183 | 210
112 | w
m | 4336
4498 | 420
323 | vst | 8121 | 532
405 | | vst | 1275 | 211 | m | 4523 | 421 | st | 8208 | ` 611 | | m
vw | 1618
1746 | $\begin{array}{c} 202 \\ 220 \end{array}$ | w
vw | 4651
4933 | $\begin{array}{c} 332 \\ 304 \end{array}$ | w | 8614 | { 443
514 | | st | 1830 | 212 | m | 5363 | 413 | vw | 8766 | 612 | | m | 1896 | 103 | vw | 5525 | 205 | w | 8867 | 316 | | w | 2148 | 301 | m | 5611 | 431 | m | 8988 | 425 | | w | 2177 | 310 | w | 5741 | 215 | w | 9075 | 541 | | m | 2362 | 311 | w | 5830 | 511 | w | 9265 | 524 | | $\mathbf{v}\mathbf{w}$ | 2482 | 222 | w | 6482 | 521 | w | 9414 | 622 | | m | 2704 | 302 | w | 6702 | 006 | m | 9516 | 326 | | $\mathbf{v}\mathbf{w}$ | 2766 | 213 | w | 6876 | 334 | m | 9632 | 542 | | w | 2821 | 320 | vw | 7037 | 522 | m | 9754 | 630 | | m
vw | 3011
3200 | $\begin{array}{c} 321 \\ 104 \end{array}$ | w | 7100 | { 503
433 | st | 9914 | 444 | | m | 3419 | 114 | st | 7314 | 513 | | 1 1 | | Table 6. Powder photograph data of Pd₄Se annealed at 300°C, CuKa radiation. The Pd_{2.8}Se phase. Powder photographs of samples in the composition range between Pd₄Se and Pd_{1.1}Se contain reflections from a phase with composition around Pd_{2.8}Se. The photographs of Pd₃Se show some additional very weak reflections that are probably from the Pd₄Se phase, and the photograph of Pd_{2.5}Se shows rather strong reflections from a phase richer in selenium. In Table 7 are listed the lines found in the low angle region on a powder photograph of the Pd_{2.5}Se sample. The structure of this phase is unknown. On some photographs a few additional reflections were found that are possibly due to an unidentified phase, perhaps only stable at higher temperatures. | Table 7. | Low angle reflections | on a powder | photograph o | $f Pd_{2.5}Se$ | annealed at | 450°C, CuKa | |----------|-----------------------|-------------|--------------|----------------|-------------|-------------| | | | radi | ation. | | | | | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in $ m \AA$ | $I_{ m obs}$ | sin²Ø · 104 | d in $oldsymbol{A}$ | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in Å | |----------------|---------------------------|-----------------|--------------|-------------|-----------------------|--------------|---------------------------|--------| | vw
w* | 478 | 3.523 | st* | 902 | 2.564 | st | 1226 | 2.199 | | | 531 | 3.341 | st | 989 | 2.449 | vw | 1294 | 2.142 | | \mathbf{m}^* | 585 | 3.184 | m | 1007 | 2.428 | st | 1361 | 2.088 | | vw | 635 | 3.056 | m | 1044 | 2.384 | m* | 1426 | 2.040 | | vw* | 690 | 2.932 | st | 1069 | 2.356 | | | | | w* | 745 | 2.820 | vst | 1190 | 2.233 | | | | ^{*} Reflections probably from the Pd_{1.1}Se phase. The $Pd_{1.1}$ Se phase (Pd_9Se_8 ?). Powder photographs of PdSe samples contain some of the strongest reflections from the PdSe₂ phase in addition to the characteristic pattern of a cubic phase. These additional reflections are absent on photographs of $Pd_{1.1}$ Se and the cubic phase is therefore assumed to have a composition close to Pd_9Se_8 . A record of the reflections observed for Pd_{1.1}Se is found in Table 8. The unit cell is primitive with lattice constant a = 10.604 Å. A density determination on Pd_{1.1}Se gave 8.30 g cm⁻³ and thus a cell content of 33.7 palladium atoms and 30.0 selenium atoms. It is interesting to note that Juza, Hülsmann, Meisel and Biltz ²⁰ found a phase at the composition Rh₉S₈ by tensimetric analysis of the rhodium sulfur system. According to X-ray studies by Mr. Ø. Steen in this institute the structure of Rh₉S₈ is also cubic and probably closely related to that of Pd₉Se₈. Table 8. Powder photograph data of Pd_{1.1}Se annealed at 450°C, CuKa radiation. | $I_{ m obs}$ | sin ² · 104 | $h^2+k^2+l^2$ | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | $h^2 + k^2 + l^2$ | $I_{ m obs}$ | sin² ⊕ · 10⁴ | $h^2 + k^2 + l^2$ | |------------------------|------------------------|---------------|------------------------|---------------------------|-------------------|------------------------|---------------------|----------------------| | vw | 215 | 4 | w | 2753 | 52 | vw | 6764 | 128 | | $\mathbf{v}\mathbf{w}$ | 426 | 4
8
9 | $\mathbf{v}\mathbf{w}$ | 3009 | 57 | w | 6918 | 131 | | $\mathbf{v}\mathbf{w}$ | 478 | | $\mathbf{v}\mathbf{w}$ | 3065 | 58 | \mathbf{w} | 7078 | 134 | | \mathbf{st} | 532 | 10 | st | 3122 | 59 | \mathbf{w} | 7181 | 136 | | vst | 586 | 11 | $\mathbf{v}\mathbf{w}$ | 3224 | 61 | w | 7344 | 139 | | $\mathbf{v}\mathbf{w}$ | 632 | 12 | vw | 3277 | 62 | w | 7602 | 144 | | vw | 660 | ? | w | 3384 | 64 | $\mathbf{v}\mathbf{w}$ | 7706 | 146 | | \mathbf{m} | 690 | 13 | vw | 3433 | 65 | $\mathbf{v}\mathbf{w}$ | 7764 | 147 | | st | 742 | 14 | w | 3488 | 66 | w | 8027 | 152 | | $\mathbf{v}\mathbf{w}$ | 787 | ? | w | 3538 | 67 | $\mathbf{v}\mathbf{w}$ | 8182 | 155 | | vst | 903 | 17 | \mathbf{w} | 3597 | 68 | \mathbf{m} | 8344 | 158 | | m | 956 | 18 | vw | 3647 | 69 | $\mathbf{v}\mathbf{w}$ | 8446 | 160 | | \mathbf{m} | 1008 | 19 | w | 3810 | 72 | \mathbf{w} | 8497 | 161 | | m | 1061 | 20 | w | 3909 | 74 | w | 8553 | 162 | | m | 1114 | 21 | vw | 3962 | 75 | $\mathbf{v}\mathbf{w}$ | 8656 | 164 | | vw | 1161 | 22 | vw | 4226 | 80 | w | 8709 | 165 | | w | 1324 | 25 | vw | 4278 | 81 | vw | 8925 | 169 | | w | 1379 | 26 | vw | 4330 | 82 | w | 8973 | 170 | | vst | 1430 | 27 | vw | 4434 | 84 | st | 9025 | 171 | | vw | 1550 | 9 | w | 4541 | 86 | | 00== | (a.171 | | vst | 1695 | 32 | vw | 4645 | 88 | m, | 9075 | ${a_2171 \atop 172}$ | | vw | 1748 | 33 | vw | 4706 | 89 | \mathbf{w} | 9290 | 176 | | w | 1801 | 34 | vw | 4759 | 90 | m | 9395 | 178 | | m | 1906 | 36 | m | 5073 | 96 | vst | 9446 | 179 | | vw | 1962 | 37 | m | 5232 | 99 | | 0.40= | (a.179 | | m | 2017 | 38 | vw | 5606 | 106 | \mathbf{vst} | 9497 | ${a_1179 \atop 180}$ | | w | 2115 | 40 | w | 5658 | 107 | w | 9605 | 182 | | m | 2170 | 41 | vw | 5814 | 110 | m | 9762 | 185 | | m | 2222 | 42 | vw | 5968 | 113 | | ŀ | jα,185 | | vw | 2277 | 43 | m | 6130 | 116 | \mathbf{st} | 9815 | 186 | | w | 2383 | 45 | vw | 6450 | 122 | m | 9866 | 187 | | vw | 2540 | 48 | w | 6495 | 123 | w | 9916 | a ₂ 187 | | w | 2648 | 50 | vw | 6608 | 125 | •• | | | The PdSe₂ phase. After annealing PdSe₂ for fifty days at 650°C some small, badly developed crystals were obtained. Weissenberg photographs showed that the crystals were orthorhombic and gave the approximate cell dimensions. The powder photograph of PdSe₂ could then be indexed as shown in Table 9 and these lattice constants were arrived at: $$a = 5.741 \text{ Å},$$ $b = 5.866 \text{ Å},$ $c = 7.691 \text{ Å},$ $a:b:c = 0.9787:1:1.3111.$ Missing reflections are of the type 0 k l absent when k = 2n+1, h 0 l absent when l = 2n+1 and h k 0 absent when h = 2n+1. The characteristic space group is thus P b c a (D_{2h}^{15}) and on basis of the observed density 6.77 g cm⁻³ the unit cell contains four (4.00) palladium and eight (8.00) selenium atoms. | | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | hkl | |------------------------|---------------------------|---|--------------|---------------------------|---------------|--------------|---------------------------|-------| | vst | 638 | 002 | w | 3815 | 321 | | | (341 | | w | 718 | 111 | w | 3952 | 214 | w | 7076 | 126 | | st | 922 | 102 | w | 4170 | 133 | | | 404 | | m | 1092 | 020 | w | 4267 | 313 | w | 7113 | 216 | | m | 1136 | 200 | ~* | 4500 | (115 | m | 7254 | 151 | | \mathbf{m} | 1196 | 112 | st | 4526 | 041 | | | (511 | | \mathbf{m} | 1253 | 021 | w | 4765 | 224 | ~4 | 7545 | 334 | | \mathbf{m} | 1415 | 210 | vw | 5005 | ∫ 042 | st | 1949 | 23 | | m | 1537 | 121 | V W | 3003 | 233 | | | 342 | | w | 1571 | 211 | vw | 5087 | (323 | w | 7615 | 32 | | \mathbf{m} | 1730 | 022 | V W | { l | 304 | vw | 7935 | 226 | | \mathbf{m} | 1777 | 202 | vw | 5174 | 331 | w | 8030 | 1 512 | | \mathbf{st} | 1988 | 113 | w | 5279 | ſ 13 4 | W | | 244 | | $\mathbf{v}\mathbf{w}$ | 2047 | 212 | w | 1 1 | 142 | w | 8176 | 424 | | \mathbf{m} | 2233 | 220 | w | 5340 | 125 | m | 8320 | 1 048 | | \mathbf{m} | 2522 | 023 | vw | 5654 | ∫ 332 | 1111 | 1 1 | 1117 | | w | 2837 | { 104 | " | 303 1 | 241 | vw | 8808 | 513 | | | 1 1 | 213 | vw | 5799 | 043 | vw | 8853 | 02 | | $\mathbf{v}\mathbf{w}$ | 2868 | 222 | ''' | 0.00 | 1 421 | m | 8908 | 44(| | \mathbf{st} | 2903 | 131 | w | 6137 | 234 | vw | 8974 | 338 | | \mathbf{st} | 2998 | 311 | 1 " | 010. | 242 | w | 9174 | 217 | | $\mathbf{v}\mathbf{w}$ | 3100 | 114 | w | 6269 | 116 | w | 9295 | 236 | | \mathbf{w} | 3200 | 302 | | 1 1 | 422 | w | 9375 | 253 | | \mathbf{w} | 3377 | 132 | w | 6445 | 333 | w | 9453 | 344 | | vw | 3469 | 312 | vw | 6792 | 026 | 1 | 3 200 | 248 | | vw | 3597 | 230 | l | 1 | 315 | m. | 9540 | 434 | | vw
vw | 3630
3677 | $\begin{array}{c} 024 \\ 204 \end{array}$ | w | 6897 | 044 | ' | | 1 442 | Table 9. Powder photograph data of PdSe, annealed at 450°C, FeKa radiation. ## C. Palladium tellurides In the palladium tellurium system the following intermediate phases were found: Pd₄Te, Pd₃Te, Pd₂Te, PdTe and PdTe₂. In addition, a sixth phase probably exists in the range between Pd₃Te and Pd₂Te. The exact composition limits of the phases have not been determined, and the formulae only indicate the approximate composition of the phases. All phases have been found both in quenched and in slowly cooled preparations. The samples are gray in color and apart from PdTe, they are brittle. The only palladium tellurides described earlier are the monotelluride by Tibbals, Jr. 15 and Thomassen 13 and the ditelluride by Thomassen 13. The Pd₄Te phase. Single crystals of the Pd₄Te phase were obtained in a sample with gross composition Pd Te that had been heated at 550°C for fifty days. Weissenberg photographs showed primitive cubic symmetry, and by means of powder photographs the lattice constant of Pd. Te was found to be a = 12.674 Å. The single crystal photographs show strong reflections only in the equatorial and fourth layer line while those in the first, second, third, fifth and sixth layer line are weak. This suggests that the true unit cell is a superstructure cell, and as apparent from Table 10 the strong reflections are multiples of $h^2+k^2+l^2=32$, indicating that the "subcell" with a'=3.168 Å is approximately body centered. | Table 10. | Powder | photograph | data | of | $Pd_{4}Te$ | annealed | with | excess | Pd | at | 500°C, | CuKa | |-----------|--------|------------|------|----|------------|----------|------|--------|----|----|--------|------| | | | | | | radiati | on. | | | | | | | | $I_{ m obs}$ | sin²⊖ · 10⁴ | $h^2+k^2+l^2$ | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | $h^2 + k^2 + l^2$ | $I_{ m obs}$ | sin³⊕ · 10⁴ | $h^2 + k^2 + l^2$ | |--------------|-------------|---------------|--------------|---------------------------|-------------------|--------------|-------------|-------------------| | vw | 1002 | 27 | vw | 4504 | 122 | w | 8092 | 219 | | vw | 1150 | ? | m | 4730 | 128 | vst | 8274 | 224 | | vst | 1193 | 32 | vw | 5149 | 139 | w | 8681 | 235 | | vw | 1529 | 41 | m | 5922 | 160 | w | 8721 | 236 | | w | 2193 | 59 | w | 6330 | 171 | w | 9130 | ? | | m | 2376 | 64 | vw | 6915 | 187 | st | 9270 | 251 | | vw | 3064 | 83 | w | 7092 | 192 | vw | 9381 | 254 | | vw | 3141 | 85 | vw | 7239 | 196 | m | 9453 | 256 | | st | 3557 | 96 | vw | 7460 | 202 | vw | 9751 | 264 | | w | 3962 | 107 | vw | 7505 | 203 | w | 9861 | 267 | | vw | 4190 | 113 | vw | 7613 | 206 | | | | | vw | 4319 | 117 | vw | 7831 | 212 | | | | In agreement with this, the observed density 11.40 g cm⁻³ of Pd₄Te confirms that the number of atoms in the subcell is close to two (1.575 Pd atoms and 0.394 Te atoms). The structure can probably be looked at as a body centered arrangement of palladium atoms of which one fifth has been substituted by tellurium atoms in an ordered way. However, the atoms are slightly displaced from the ideal positions as evidenced especially by the strong $h^2 + k^2 + l^2 = 251$ reflection. The phases between Pd₄Te and PdTe. Samples in this range give very complicated powder photographs and the phases are not easily identified. The Pd₄Te reflections are found in Pd_{3.5}Te but are absent in Pd₃Te. No lines from a tellurium richer phase are presumably present in Pd₃Te since the powder photographs of Pd₃Te and Pd₂₋₇₅Te are alike. The low angle reflections found on a powder photograph of Pd₃Te are collected in Table 11. There also exists a phase with composition around Pd₂Te. Its characteristic low angle reflections are listed in Table 11 too. A sample with composition Pd_{1.5}Te was found to contain both the Pd₂Te and the PdTe phase. The powder photograph of Pd_{2.5}Te is markedly different from that of Pd₂Te and does not resemble that of Pd_{2.75}Te either, see Table 11. Probably therefore a third phase exists in this range. Table 11. Characteristic low angle reflections on powder photographs of Pd₂Te, Pd_{2.5}Te and Pd₃Te. | | Pd₃Te | | | Pd₃.₅Te | | | Pd₃Te | | | |--------------|---------------------------|---|--------------|---------------------------|---|--------------|---------------------------|---|--| | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in Å | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in Å | $I_{ m obs}$ | $\sin^2\Theta \cdot 10^4$ | d in $ ext{\AA}$ | | | vw | 446 | 3.65 | vw | 460 | 3.59 | vw | 308 | 4.39 | | | vw | 588 | 3.18 | vw | 602 | 3.14 | vw | 354 | 4.09 | | | w | 683 | 2.95 | vw | 703 | 2.90 | w | 525 | 3.36 | | | w | 929 | 2.53 | vw | 917 | 2.54 | w | 553 | 3.28 | | | w | 958 | 2.49 | w | 953 | 2.50 | vw | 627 | 3.08 | | | m | 991 | 2.45 | w | 986 | 2.45 | vw | 732 | 2.85 | | | w | 1101 | 2.32 | vw | 1128 | 2.29 | vw | 765 | 2.79 | | | w | 1128 | 2.29 | vst | 1165 | 2.26 | w | 800 | 2.72 | | | vst | 1162 | 2.26 | vw | 1192 | 2.23 | m | 919 | 2.54 | | | st | 1192 | 2.23 | w | 1215 | 2.21 | w | 960 | 2.49 | | | W | 1271 | 2.16 | m | 1232 | 2.19 | w | 1007 | 2.43 | | | w | 1426 | 2.04 | w | 1306 | 2.13 | vw | 1074 | 2.35 | | | m | 1502 | 1.99 | vw | 1343 | 2.10 | m | 1117
1147 | 2.30 | | | vw | 1531
1594 | 1.97 | m | 1512 | 1.98 | w | 1173 | $2.27 \\ 2.25$ | | | w | 1628 | $\begin{array}{c} 1.93 \\ 1.91 \end{array}$ | vw | 1587
1654 | $\begin{array}{c} 1.93 \\ 1.89 \end{array}$ | m | 1173 | $\begin{array}{c} 2.23 \\ 2.23 \end{array}$ | | | m | 1667 | 1.89 | vw | 1690 | 1.89 | st | 1226 | $\substack{2.23 \\ 2.20}$ | | | vw | 1001 | 1.09 | vw | 1090 | 1.07 | w | 1247 | 2.20
2.18 | | | | | | | | | vw | 1306 | $\frac{2.18}{2.13}$ | | | | | | | | | m | 1349 | $\frac{2.13}{2.10}$ | | | | 1 1 | | | | | w | 1428 | $\frac{2.10}{2.04}$ | | | | 1 | | | | | w | 1508 | $\frac{2.04}{1.98}$ | | | | | | | | | w | 1508 | 1.98 | | | | _ | | l | <u> </u> | | m | 1009 | 1.70 | | The PdTe and PdTe₂ phase. A redetermination of the lattice constants of hexagonal PdTe with structure of the NiAs-(B8-)type gave the result: $$a = 4.1521 \text{ Å}, \qquad c = 5.6719 \text{ Å}, \qquad c/a = 1.3660.$$ These values are in good agreement with those determined by Thomassen ¹³ $(a = 4.135 \pm 0.004 \text{ Å}, c = 5.674 \pm 0.005 \text{ Å}).$ The homogeneity range of the PdTe phase is apparently rather narrow since the lattice constants of the PdTe phase are equal within the limits of experimental error both in Pd_{1.5}Te, PdTe and PdTe_{1.5}. The structure of PdTe₂ is also hexagonal and for a sample that had been heated with excess tellurium at 300°C for 30 days the following lattice constants were computed: $$a = 4.0365 \text{ Å},$$ $c = 5.1262 \text{ Å},$ $c/a = 1.2700.$ According to Thomassen ¹⁸ the structure is of the Cd(OH)₂-(C6-) type and the lattice constants given by him ($a=4.036\pm0.003$ Å, $c=5.128\pm0.004$ Å) are in excellent agreement with ours. A continuous solid solution between PdTe and PdTe₂ is not found, and in general it seems like none of the palladium chalcogenides have extended ranges of homogeneity. Among the chalcogenides of the 3d transition elements solid solutions involving a continuous transition from the B8 to C6 structure type are quite common. As examples might be mentioned the CoTe - CoTe₂ and NiTe - NiTe₂ transitions found by Tengnér ²¹ and the TiTe - TiTe₂ transition studied by Ehrlich ²². Recently, the phases RhTe and RhTe₂ have been identified by Geller ²³. RhTe was found to have a structure of the B8 type and the high temperature form of RhTe₂ a structure of the C6 type. No samples with intermediate compositions were studied so it is not known to what extent these phases show mutual solubility. ### MAGNETIC PROPERTIES OF THE PALLADIUM CHALCOGENIDES The magnetic susceptibility of Pd₄S, Pd_{2.2}S, Pd₄Se, Pd_{1.1}Se, PdSe₂ and Pd₄Te was measured at six different temperatures from —183° to 450°C and the results are listed in Tables 12 and 13. | Compound | Temperature °C | | | | | | | | |---|---------------------|---------------------|---------------------------|---------------------------------------|--|--|--|--| | Compound | -183 | -78 | 20 | 150 | 300 | 450 | | | | Pd ₄ S
Pd _{1.4} S
Pd ₄ Se
Pd _{1.1} Se
PdSe ₄ | * 0.27 * 0.07 -0.26 | * 0.25 * 0.05 -0.26 | * 0.17
* 0.02
-0.26 | 0.20
0.17
0.18
0.00
-0.26 | 0.01
0.14
0.04
-0.01
-0.26 | 0.06
0.12
0.00
-0.01
-0.27 | | | Table 12. Magnetic susceptibility of the palladium chalcogenides, $\chi_r \times 10^{\circ}$. Table 13. The field strength dependent susceptibility of the Pd_4X compounds, $\chi_g \times 10^{\circ}$. | Compound | <i>T</i> °C | $H_{ m max}$ | | | | | | |-------------------|--|--|---------------------|---------------------------|--|--|--| | Compound | | 4 015 Ø | 4 700 Ø | 5 110 Ø | | | | | Pd ₄ S | -183
- 78 | 19.9
16.7 | 17.5
14.6
6.0 | 16.4
13.5 | | | | | Pd₄Se | $ \begin{array}{r} 20 \\ -183 \\ -78 \\ 20 \end{array} $ | $ \begin{array}{r} 7.0 \\ \hline 26.2 \\ 11.0 \\ 1.9 \end{array} $ | 22.8
9.5
1.7 | 5.4
21.2
8.5
1.6 | | | | | - Pd₄Te | $egin{array}{c} 20 \\ -183 \\ -78 \\ \end{array}$ | 5.1
4.7 | 4.5
4.2 | 4.3
3.6 | | | | | | 20
150 | 4.3
3.6 | 3.8
3.2 | 3.6
3.1 | | | | ^{*} The field strength dependent susceptibilities are listed in Table 13. Fig. 1. Effective magnetic moments of the compounds $Pd_{2.2}S$, $Pd_{1.1}Se$ and $PdSe_2$ as functions of temperature. Disregarding the peculiar behavior of the $\mathrm{Pd_4X}$ compounds at low temperatures, the magnetic susceptibilities are exceedingly low. If one subtracts the induced diamagnetism in the palladium (—21.3×10⁻⁶ per mole $\mathrm{Pd^0}$ according to Hoare and Matthews ²⁴) and in the chalcogen (—32.6×10⁻⁶ per mole $\mathrm{S^{-2}}$, —47.6×10⁻⁶ per mole $\mathrm{Se^{-2}}$ and —70.6×10⁻⁶ per mole $\mathrm{Te^{-2}}$ according to Angus ²⁵) one finds effective magnetic moments in the range 0.19 to 0.60 Bohr magnetons for the compounds $\mathrm{Pd_{2.2}S}$, $\mathrm{Pd_{1.1}Se}$ and $\mathrm{PdSe_2}$, see Fig. 1. Considerable uncertainty is connected with the diamagnetic corrections. They are most probably too high since they refer to completed electron shells, thus resulting in too high effective magnetic moments. Even so, the magnetic moments are rather small and show that the compounds are of an essentially metallic or covalent type. In case the bonds had been of the ionic type, a magnetic moment of 2.83 B.M. was expected for the Pd⁺² ion and 4.90 B.M. for the Pd⁺⁴ ion according to the "spin only" theory. The tendency, present among the nickel chalcogenides, for the magnetism to be weaker than expected, is even more pronounced among the palladium chalcogenides. One possible explanation for this behavior is that interaction between the atoms changes the coupling of the 4d electrons of palladium so that the stable configuration does not have the maximum multiplicity required by the Hund rule. Below certain temperatures, the magnetic susceptibilities of Pd₄S, Pd₄Se and Pd₄Te are field strength dependent and increase with decreasing temperature. The field strength dependence is observed at room temperature for Pd₄S and Pd₄Se and also at 156°C for Pd₄Te. The authors should like to express their appreciation to professor Haakon Haraldsen for his interest in this study. They wish to thank Falconbridge Nikkelverk A/S for generously supplying palladium metal and to thank Bolidens Gruvaktiebolag for the selenium. They also wish to thank siv.ing. Sigurd Rutlin, Sentralinstitutt for Industriell Forskning, for carrying out the spectrographic analysis. #### REFERENCES - 1. Berzelius, J. Kgl. Svenska Vetenskapsakad, Handl. 1813 204. - 2. Gmelins Handbuch der anorganischen Chemie, System-Nummer 65: Palladium, Berlin 1942. - 3. Schneider, R. Ann. Physik. 141 (1870) 519; 148 (1873) 625. - 4. Petrenko-Kritschenko, P. Z. anorg. Chem. 4 (1893) 247. 5. Roessler, F. Z. anorg. Chem. 9 (1895) 31. - 6. Maxted, E. B. J. Chem. Soc. 1919 1050. - Manoff, W. N. Chem. Ztg, 47 (1923) 209. Weibke, F. and Laar, J. Z. anorg. u. allgem. Chem. 224 (1935) 49. Biltz, W. and Laar, J. Z. anorg. u. allgem. Chem. 228 (1936) 257. Gaskell, T. F. Z. Krist. 96 (1937) 203. - 11. Rössler, H. Ann. 180 (1876) 240. - Moser, C. and Atynski, K. Monatsh. 45 (1924) 235. Thomassen, L. Z. physik. Chem. B2 (1929) 349. Wöhler, L., Ewald, K. and Krall, H. G. Ber. 66B (1933) 1638. Tibbals, C. A. Jr. J. Am. Chem. Soc. 31 (1909) 902. - Nelson, J. B. and Riley, D. P. Proc. Phys. Soc. London 57 (1945) 160. Owen, E. A. and Yates, E. L. Phil. Mag. [7] 16 (1933) 606. - Jedele, A. Z. Metallkunde 27 (1935) 271. Bannister, F. A. Z. Krist. 96 (1937) 201. - 20. Juza, R., Hülsmann, O., Meisel, K. and Biltz, W. Z. anorg. u. allgem. Chem. 225 (1935) - 21. Tengnér, S. Z. anorg. u. allgem. Chem. 239 (1938) 126. - 22. Ehrlich, P. Z. anorg. Chem. 260 (1949) 1. - Geller, S. J. Am. Chem. Soc. 77 (1955) 2641. Hoare, F. E. and Matthews, J. C. Proc. Roy. Soc. London A212 (1952) 137. - 25. Angus, W. R. Proc. Roy. Soc. London A136 (1932) 573. Received July 3, 1956.