Table 2.

Solvent system		Partition coefficients (K)					
	Pure compounds designed below			Components in adrenal vein blood			
	DC	P	⊿ ⁴-A	x	x-Ac	у	z
$n ext{-Hexane} / 50 \% \text{ ethanol} + 50 \% \text{ H}_2\text{O} \\ n ext{-Hexane} / 75 \% \text{ ethanol} + 25 \% \text{ H}_2\text{O} \\ n ext{-Hexane} / 90 \% \text{ ethanol} + 10 \% \text{ H}_2\text{O}$	0.09	0.9	0.08	10 0.67 0.41	6.7	2.70	8.1

DC: \triangle^4 -Pregnene-21-ol-3,20-dione (Cortexone) P: \triangle^4 -Pregnene-3,20-dione (Progesterone)

 Δ^4 -A: Δ^4 -Androstene-3,17-dione

x-Ac: The acetate of the unknown component "x"

not due to the sulfuric acid alone which in itself gave rise to a double peak at 320 and 345 $m\mu$.

- Carstensen, H. Acta Chem. Scand. 9 (1955) 1026
- Pincus, G. and Pearlman, W. H. Endocrinology 29 (1941) 413.
- Mader, W. J. and Buck, R. R. Anal. Chem. 24 (1952) 666.
- Wilson, H. and Fairbanks, R. Arch. Biochem. and Biophys. 53 (1954) 71.
- Wilson, H. Arch. Biochem. and Biophys. 52 (1954) 217.
- 6. Norymberski, J. K. Nature 170 (1952) 1074.
- 7. Kober, S. Biochem. Z. 239 (1931) 209.

Received September 6, 1955.

Semimicro Synthesis of Dihydrouracil and Uracil Labeled in Position 4, 5 or 6 with Carbon¹⁴C

PER FRITZSON*

Norsk Hydro's Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway

Recent evidence indicates the dihydropyrimidines as intermediates in the catabolism of the pyrimidine bases. Lieberman et al.\(^1,^2\) have reported the isolation of an enzyme system from an anaerobic soil bacterium which reduced orotic acid to dihydroorotic acid. Di Carlo et al.\(^3\) suggested dihydrouracil as an intermediate in uracil catabolism from studies on the assimilation of nitrogen by Torula utilis. The breakdown of dihydrouracil to \(^3\)-alanine in rat liver slices is shown by Fink et al.\(^4\), and Funk et al.\(^5\) reported the isolation of dihydrouracil from beef spleen.

For further investigation of the metabolism of uracil and dihydrouracil and their biological relation, a semimicro synthesis of the two pyrimidines labeled in position 4, 5 or 6 has been worked out, using potassium cyanide-14C or chloroacetic acid labeled with 14C in the 2 or 1-position, respectively, as starting materials.

126 mg of potassium cyanide containing 2 mC of 14C were treated with 244 mg of the potassium salt of chloroacetic acid, and the resultant potassium cyanoacetate was catalytically hydrogenated under a pressure of 2 atm. at 18° for 11 hours to β-alanine 6,7. After two crystallizations from alcohol-water the crude β -alanine was reacted with 160 mg of potassium cyanate at 25°, forming the potassium salt of β -ureidopropionic acid 8,9. Treatment of the crude product with hydrochloric acid and subsequent heating of the dry substance to 170° yielded 119 mg (56 % based on chloroacetic acid) of dihydrouracil-4-14C crystallized from water. On recrystallization from water, adding charcoal, the product melted at 274—275° (reported 10 m. p. 275—276°). The theoretical specific activity was 9.1 µC per

^{*} Fellow of the "Norwegian Cancer Society", Oslo, Norway.

40 mg of the dihydrouracil were brominated according to the method of Gabriel ¹¹. Subsequent heating of the crude product to 200° yielded 34.6 mg (88 % based on dihydrouracil) of uracil-4.14C crystallized from water. On recrystallization from water, adding charcoal, the product melted at 335° as reported ¹⁰ for uracil. The theoretical specific activity was 9.1 µC per mg.

Attempts to prepare uracil by oxidation of dihydrouracil by alloxan according to John-

son 18 were unsuccessful.

Preparation of β -ureidopropionic acid labeled in the 1, 2 or 3-position is accomplished readily in aqueous solution according to Batt et ¹al. ³ by decomposition in alkali of dihydrouracil labeled in position 6, 5 or 4 respectively.

The author wishes to thank Miss Jorunn Lassen for technical assistance in the synthesis of dihydrouracil.

- Lieberman, I. and Kornberg, A. Federation Proc. 12 (1953) 239.
- Lieberman, I. and Kornberg, A. Biochim. et Biophys. Acta 12 (1953) 223.

- Di Carlo, F. J., Schultz, A. S. and Kent, A. M. J. Biol. Chem. 199 (1952) 333.
- Fink, R. M., Fink, K. and Henderson, R. B. J. Biol. Chem. 201 (1953) 349.
- Funk, C., Merritt, A. J. and Ehrlich, A. Arch. Biochem. and Biophys. 35 (1952) 468.
- Fritzson, P. and Eldjarn, L. Scand. J. Clin. Lab. Invest. 4 (1952) 375.
- Ruggli, P. and Businger, A. U.S.P. 2, 367, 436 (1945).
- Lengfeld, F. and Stieglitz, J. Am. Chem. J. 15 (1893) 516.
- 9. Gabriel, S. Ber. 38 (1905) 635.
- Fischer, E. and Roeder, G. Ber. 34 (1901) 3759.
- 11. Gabriel, S. Ber. 38 (1905) 637, 1690.
- 12. Johnson, T. B. J. Am. Chem. Soc. 63 (1941) 263.
- Batt, R. D., Martin, J. K., Ploeser, J. McT. and Murray, J. J. Am. Chem. Soc. 76 (1954) 3663.

Received September 1, 1955.