X-Ray Studies on "Sodium Metabismuthate"

BENGT AURIVILLIUS

Institute of Inorganic and Physical Chemistry, University of Stockholm, Sweden

So-called sodium metabismuthate was prepared using the method of Scholder and Stobbe. X-ray powder photographs indicate that its crystal structure is of the ilmenite type. The Bi parameter was determined. The quadratic form for the lines in the powder photographs is given for a commercial sodium metabismuthate.

So-called sodium metabismuthate (NaBiO₃.aq) was prepared using the procedure given by Scholder and Stobbe ¹. The samples were dried over H₂SO₄ in vacuo. Water contents between 1.6 and 4.0 % by weight were found, corresponding to a ratio of 0.3—0.6 for H₂O/total bismuth in the samples. The ratio Bi⁵⁺/Bi_{total} varied between 88 and 96 %. Analysis of one sample (I) gave: $Na^{+}:Bi_{5}^{+}:Bi_{total}:H_{2}O = 1.05:0.96:1.00:0.52$. Powder photographs taken in a Guinier focusing camera using Cu-K a radiation indicated a rhombohedral unit cell with a = 6.21 Å, $a = 53.^{\circ}2$ and V = 143 Å³. A few, very weak, extra lines showed that the preparation contained minor amounts of impurities, which, however, could not be identified. No shift in the cell dimensions was found for samples of different compositions. The observed density of (I) was 5.8 in fair agreement with the calculated values of 6.38 for 2 NaBiO₃ or 6.58 for 2(NaBiO₃.0.5 H₂O) per unit cell. The cell dimensions and intensities of the lines in the powder photographs are very similar to those of α -NaSbO₃, which was found by Schrewelius 2 to be of the ilmenite type with the unit cell dimensions $\alpha = 6.12$ Å, $\alpha = 51.^{\circ}1$ and V = 130 Å³. The two compounds are evidently isomorphous. For α-NaSbO₃, Schrewelius gave the following data:

```
Space-group: R 3 (No. 148)

Atomic positions: 2 Na at 2(c): \pm(x,x,x) with x = 0.342

2 Sb at 2(c): \pm(x,x,x) with x = 0.156

6 O at 6(f): \pm(x,y,z; z,x,y; y,z,x)
```

with x = 0.54; y = -0.03, and z = 0.26.

For the present compound it was only possible to determine the Bi parameter which was found to be 0.160 ± 0.005 . In view of the facts that sodium metabismuthate has only slightly larger unit cell dimensions than the waterfree α -NaSbO₃ and that the positions of the heavy atoms of the two com-

I obs	104sin49 obs	104sin40 calc	$rac{hkl}{ ext{rh}}$	I obs	104sin20 obs	10⁴sin²Θ calc	$rac{hkl}{\mathrm{rh}}$
st	210	210	111	\mathbf{vst}	977	978	210
vw	227	_		\mathbf{w}	1 046	1 047	111
st	279	279	100	w	1 115	1 117	200
st	348	349	110	\mathbf{m}	1 399	(1 398	220
st	631	630	211			1 398 1 400	$\bf 322$
vw	677	_	_	vw	1 456		
vw	703	_		vw	1 491		
vst	767	768	$1\overline{1}0$	${f st}$	1 609	(1 608	311
vw	781					1 608 1 609	321
• • •		f 840	221	m	1 811	1 815	210
m	842	841	222			1 885	$21\overline{1}$
		,		\mathbf{w}	1 888	1 893	333

Table 1. Part of the powder photographs of NaBiO₃. Cu-Ka radiation.

pounds are very nearly the same, the lattice cannot possibly incorporate the water found in the preparation, which must consequently be combined with the impurities observed. Part of the powder photograph of NaBiO₃ is given in Table 1. The investigation evidently shows that NaBiO₃ is adequately described as a sodium bismuth(V)oxide.

Commercial "NaBiO₃.2H₂O" was also studied but found to be different from the above phase. The yellow preparation "NaBiO₃.2H₂O" manufactured by Merck gave rather simple powder photographs which could be explained by assuming a hexagonal unit cell with a=5.59 Å, c=7.40 Å, and V=201 Å³. Samples with brownish or brownish-black colours, manufactured by Schering-Kahlbaum yielded the same pattern and in addition a number of extra lines. No systematic extinctions were found in the powder photographs. It is worth noting that the hexagonal cell has about the same a axis as NaBiO₃ (ilmenite type) when the latter is referred to a hexagonal unit cell with a=5.56 Å and $c=15.9_5$ Å, which might indicate a structural relationship between the two phases. The Merck sample gave the following composition when analysed: Na⁺:Bi⁵⁺:Bi_{total}:H₂O = 0.8:0.8:1.0:5. The water was calculated by difference. The observed density was 5.0. There are probably two formula units per unit cell of the hexagonal phase, the calculated density being, e. g., 5.2 for 2(NaBiO₃.2H₂O) and 6.1 for 2(NaBiO₃.5H₂O). The present composi-

Table 2. Part of the powder photograph of "NaBiO₃ . 2H₄O" manufactured by Schering-Kahlbaum. Cu-Ka radiation. The extra lines have been omitted.

I obs	$10^4 sin^2 \Theta$ obs	104sin20 calc	hkl	I obs	$10^4 \sin^2\Theta$ obs	10⁴sin²⊕ calc	hkl
m	107	109	001	vw	1 009	1 013	200
\mathbf{w}	253	254	100	vw	1 121	1 122	201
\mathbf{m}	362	362	101	\mathbf{m}	1 193	1 192	112
\mathbf{w}	432	432	002	vw	1 225	1 229	103
\mathbf{m}	686	685	102	vw	1 445	1 451	202
\mathbf{m}	758	760	110	m	1 744	(1736	113
\mathbf{m}	867	869	111			1 736	104
$\mathbf{v}\mathbf{w}$	983	976	003	$\mathbf{v}\mathbf{w}$	1 883	` 1 881	211

tion of this compound can, however, only be found by carrying out a complete structure determination. Part of the powder photograph of "NaBiO_3.2H_2O" (Schering-Kahlbaum) is given in Table 2.

These studies form part of a research program on metal oxides and related compounds financially supported by the Swedish Natural Science Research Council.

REFERENCES

- Scholder, R. and Stobbe, H. Z. anorg. Chem. 247 (1941) 392.
 Schrewelius, N. Diss. Stockholm 1943, p. 24.

Received May 7, 1955.