Enzymic Synthesis of Xanthosineand Guanosine-5-phosphate from Inosine-5-phosphate

ULF LAGERKVIST

Biochemical Department, Karolinska Institutet, Stockholm, Sweden

The studies of Greenberg and Buchanan et al.^{1,2} have established IMP-5 * as a key intermediate in the biosynthesis of hypoxanthine in pigeon liver and considerable information has been obtained regarding the synthesis of this substance from smaller molecules via the formation of AIC-ribotide. Until recently very little was known, however, about the possible role of IMP-5 in the biosynthesis of other purine nucleotides. Carter and Cohen ^{3,4} have recently obtained evidence for a transformation of AIC-ribotide (or IMP-5) to AMP-5 by way of succinyl-AMP-5. With the discovery of this interesting reaction a connection has been established between IMP-5 and the biosynthesis of adenine nucleotides.

In view of the possibility that IMP-5 might be an intermediate in the biosynthesis of other purine nucleotides a study of the metabolism of this substance in pigeon liver extracts was carried out. When IMP-5-14C was incubated with a dialyzed extract of acetone-dried pigeon liver in the presence of DPN, ATP, PGA or HDP, L-glutamine and L-glutamate, Mg++-ions and phosphate buffer pH 7.4, two new radioactive peaks were obtained after chromatography on Dowex-2 with formic acid according to the method of Hurlbert et al5. These two peaks were tentatively as guanosine-5-phosphate and xanthosine-5-phosphate, respectively. Their identification rests on the following points: 1) A positive analysis for ribose and phosphate; 2) Acid hydrolysis yields guanine and xanthine, respectively, that can be crystallized to constant radioactivity after addition of authentic guanine or xanthine; 3) Complete dephosphorylation with *Crotalus* venom 5-phosphatase.

Further studies showed that the synthesis of GMP-5 occurred in two steps. In the first one, IMP-5 was oxidized to XMP-5 in the presence of DPN and phosphate buffer. ATP did not stimulate the reaction. If DPN was omitted there was no formation of XMP-5 (Table 1).

Table 1.

Expt. No.	Modificati the med		μmoles of XMP-5	
	DPN Nicotinamid	ATP le HDP	formed	
14	+	+	0.19	
15		+	0.00	
16	+	-	0.33	
20			0.44	

In expts. 14—16 a dialyzed extract of 500 mg acetone-dried pigeon liver was incubated at 37° C for one hour with 1 μ mole IMP-5-14C, 4 μ moles ATP, 100 μ moles HDP, 20 μ moles DPN, 120 μ moles nicotinamide, 150 μ g pyridoxal phosphate, 120 μ moles L-aspartate, 240 μ moles L-glutamate, 60 μ moles L-glutamine, 120 μ moles NH₄Cl, 120 μ moles MgSO₄ and 1 000 μ moles K-phosphate buffer pH 7.4 with the modifications indicated in the table. Final volume 20 ml.

In expt. 20 a dialyzed extract was incubated under the same conditions with 1 μ mole IMP-5-¹⁴C, 20 μ moles DPN, 120 μ moles nicotinamide and 1 000 μ moles K-phosphate buffer pH 7.4. Final volume 15 ml.

When XMP-5-14C obtained from this reaction was incubated with the extract in the presence of ATP, PGA, L-glutamine and L-glutamate, Mg++-ions and phosphate buffer GMP-5 was obtained. Under these conditions no formation of IMP-5 could be detected. Further experiments indicated that with L-glutamine as amino group donor optimal synthesis of GMP-5 was obtained at lower concentrations of the amino acid than in corresponding experiments with L-glutamate. (Fig. 1) It was therefore tentatively concluded that

^{*} The following abbreviations are employed: AIC-ribotide = 4-amino-5-imidazole-carboxamide ribotide, AMP-5 = adenosine-5-phosphate, ATP = adenosine triphosphate, DPN = diphosphopyridine nucleotide, GMP-5 = guanosine-5-phosphate, HDP = hexose diphosphate, IMP-5 = inosine-5-phosphate, PGA = 3-phosphoglyceric acid, XMP-5 = xanthosine-5-phosphate.

L-glutamine rather than L-glutamate was the specific amino group donor. Substituting L-aspartate or NH₄Cl for L-glutamine gave a very poor yield of GMP-5. When ATP was omitted no synthesis of GMP-5 was obtained (Table 2).

Table 2.

Expt.	Modifications of the medium					μ moles
	ATP PGA		L-glu- tam- ate	L-glu- tam- ine	NH4 Cl	of GMP-5 formed
23 24	+	++	+ +	++	++	0.17 0.00
29 30 31 32	+ + +	+ - -	+	+	 +	0.01 0.09 0.14 0.02

In expts. 23—24 a dialyzed extract of 500 mg acetone-dried pigeon liver was incubated at 37°C for one hour with 0.36 $\mu\rm moles$ XMP-5.¹4C, 2 $\mu\rm moles$ ATP, 100 $\mu\rm moles$ PGA, 200 $\mu\rm g$ pyridoxal phosphate, 120 $\mu\rm moles$ I.-glutamate, 60 $\mu\rm moles$ I.-glutamine, 120 $\mu\rm moles$ NH₄Cl, 120 $\mu\rm moles$ L-glutamine, 120 $\mu\rm moles$ K-phosphate buffer pH 7.4 with the modifications indicated in the table. Final volume 20 ml.

In expts. 29—32 a dialyzed extract was incubated under the same conditions with 0.20 μ moles XMP-5-¹⁴C, 2 μ moles ATP, 100 μ moles PGA, 200 μ g pyridoxal phosphate, 120 μ moles MgSO₄, 1 000 μ moles K-phosphate buffer pH 7.4 and 100 μ moles of either L-aspartate, L-glutamiate, L-glutamine or NH₄Cl. Final volume 15 ml.

In view of these findings it seems justified to assume that the biosynthesis of GMP-5 from IMP-5 in pigeon liver goes by way of an oxidation to XMP-5 and a subsequent amination of this substance (eqn. 1).

$$IMP-5 \xrightarrow{DPN} XMP-5 \xrightarrow{L-glutamine} GMP-5 (1)$$

Fig. 1. Dependence of GMP-5 synthesis on L-glutamine or L-glutamate.

GMP-5 synthesized in experiments with L-glutamine.

 $-\triangle-\triangle-$ XMP- $\tilde{5}$ reisolated in experiments with L-glutamine.

- ● - ● - GMP 5 synthesized in experiments with **I**-glutamate.

— ▲ — ▲ — XMP-5 reisolated in experiments with L-glutamate.

A dialyzed extract of 300 mg acetone-dried pigeon liver was incubated at 37° C for one hour with 0.30 µmoles XMP-5.¹⁴C, 2 µmoles ATP, 50 µmoles PGA, 200 µg pyridoxal phosphate, 120 µmoles MgSO₄, 1 000 µmoles K-phosphate buffer pH 7.4 and L-glutamine or L-glutamate as indicated in the figure. Final volume 13 ml.

A full report of these findings will be given later.

- Greenberg, G. R. Federation Proc. 12 (1953) 651.
- Buchanan, J. M. and Wilson, D. W. Federation Proc. 12 (1953) 646.
- Carter, C. E. and Cohen, L. H. J. Am. Chem. Soc. 77 (1955) 499.
- Carter, C. E. and Cohen, L. H. Federation Proc. 14 (1955) 189.
- Hurlbert, R. B., Schmitz, H., Brumm, A. E. and Potter, V. R. J. Biol. Chem. 209 (1954) 23.

Received July 22, 1955.