because viscometric methods usually are considerably more sensitive than other methods. As the substrate is a polyvalent acid, the ionic strength in the reaction mixture must be kept constant (e.g., 0.1), and the concentration of multivalent cations should be as low as possible. Addition of cysteine or other compounds containing sulphhydril groups causes a steady decrease in the viscosity of carboxymethyl chitin solutions. However, this difficulty can be overcome — in the same way as in the case of carboxymethyl cellulose — by adding a small amount of potassium ferricyanide.

Senju and Okimae have described the preparation of hydroxyethylchitin, which is probably a suitable substrate for chitinase determination but this has not yet been proved.

1. Zecheimster, L. and Toth, G. Naturwiss. 27 (1939) 367; Enzymologia 7 (1939) 165.
4. Hultin, E. and Sjögårdh, I. Forthcoming article.

The Zimmermann Method

Sven Arrhenius

Kemiska Avdelningen, Kunsl. Veterinärhögskolan, Stockholm, Sweden

This method is the most frequently used in steroid analysis. The sample is dissolved in ethanol, made alkaline with KOH, and stained with m-dinitrobenzene. If the sample contains steroids with a ketogroup in position 17, the extinction curve will show a flat maximum at 530 Å. In their absence, the curve will only slope towards longer wave-lengths. The reactions causing the staining are not known. None of the many variants of the method is accurate. One source of error is the oxidation of ethanol by the nitro compounds. The aldehyde thus formed polymerises in alkaline solution.

m-Dinitrobenzene is soluble in most organic solvents. As no staining will occur unless pOH < 2, the only suitable solvents for the reaction are the simplest alcohols. The tertiary butanol is the only alcohol not oxidised by m-dinitrobenzene. It was used for an investigation of the Zimmermann reaction. The following results were obtained:

1. Alkaline solutions of pure m-dinitrobenzene in tert. butanol have the same extinction curves as those described for stained 17-ketosteroids.
2. The intensity of the colour depends mainly on the concentration of OH-. It explains why the colours disappear after a couple of days.
3. Some carbonyl compounds as acetaldehyde, acetone, cyclohexanone, and 17-ketosteroids increase the extinction, and shift the absorption maximum over to longer wave-lengths (5600 Å). Easily enolised ketones and formaldehyde have no or only slight influence on the colour.


The Incorporation in vivo of Amino Acids into Subfractions of Cytoplasmic Particles

Tore Hultin

The Wenner-Gren Institute, Stockholm, Sweden

It has been shown previously that in chick liver the incorporation in vivo of labeled amino acids is particularly high in the submicroscopic particulate components of the cytoplasm. C14-glycine, N15-glycine, or N15-DL-alanine were injected intravenously into chicks or rats. The animals were killed 1-5 minutes after the administration of the isotope. Fractions of large and small submicroscopic particles were prepared from homogenates of the livers by differential centrifugation. (After removal of the mitochondrial fractions, the homogenates were centrifuged for 20 minutes at 20 000 g, and subsequently for 40 minutes at 105 000 g). After several washings, the particles were repeatedly treated at 0°C with 0.2 M NaHCO3, pH 8.4, and with 0.6 % desoxycholate, pH 8.4. The cholate extracts were further fractionated by means of ethanol at low temperatures.

The isotope contents of the proteins were consistently higher in the large microsomes than in the small ones. In both fractions, the carbonate extracts (which contained a major part of the ribonucleic acid of the particles) showed the highest isotope contents. In the desoxycholate extracts, the proteins of the higher ethanol fractions showed a higher isotope level than the proteins of the more readily precipitable fractions. The non-soluble residues obtained after the desoxycholate treatments, had considerably lower isotope contents.

Acta Chem. Scand. 9 (1955) No. 1