and phenol-NH₂). Because we do not know to what extent the position of the OH group in the ring influences the R₂-value we do not consider the identical chromatogram given by compound C and 5-hydroxy-piperidine-2-carboxylic acid a conclusive proof for the identity of these substances. Oxidation with permanganate in 10% sulphuric acid solution at 10°C gave mainly glutamic acid and aspartic acid in smaller amounts. On the basis of this we may conclude that in the hydroxy-piperidine-carboxylic acid which we have isolated the OH group actually is in the position 5 and the carboxyl group in the position 2. The formation of glutamic acid cannot be explained otherwise.

\[
\begin{align*}
\text{CH}_3 & \\
\text{HOOC} & \text{CH}_3 \\
\text{H}_2\text{C} & \text{CHCOOH} \\
\text{NH} & \\
\end{align*}
\]

It is possible that the new amino acid is formed from δ-hydroxylsine.

We are very grateful to Professor T. J. King, Nottingham, for a preparation containing some δ-hydroxy-piperic acid, to Dr. G. Curzon, Stanmore, England, for the isonipeotic acid (piperidine-4-carboxylic acid), to Mr. O. Oja for helping us in the preparation of nipeotic acid (piperidine-3-carboxylic acid), and to Professor A. Kalela for the plant material we got from the University Botanical Garden.

Received July 26, 1954.

Triterpenoids in Lichens

II. Taraxerene, a Naturally Occurring Triterpene

TORGER BRUUN

Institutt for Organisk Kjemi, Norges Tekniske Høgskole, Trondheim, Norway

During our researches on lichens a sample of Cladonia deformis Hoffm. was investigated. The origin of the sample has been reported previously. The general procedure for extraction with ether and working up of the extract has been reported in part I of this series.

The neutral part of the ether extract, when chromatographed on alumina furnished a petroleum (b. r. 40–70°C) eluate, which contained a hydrocarbon mixture (0.3 g) that did only partly melt on the boiling water-bath. The high-melting part of the fraction was much less soluble in petroleum than the low-melting one, and by taking advantage of this fact a sample of m. p. 230–233°C, [α]D + 4° (c. 0.83) was obtained. A much better separation, however, was achieved by careful chromatography: The hydrocarbon, dissolved in petroleum, was brought on a column of 30 g of alumina, 17 cm high, 1.5 cm diameter, and fractions of 5 ml were collected. The high-melting hydrocarbon was retained more tenaciously than the low-melting one, and thus a satisfactory separation could be obtained. For further purification the hydrocarbon was treated with petroleum, and finally the substance was crystallised from ether, m. p. 237–238°C, [α]D + 1° (c. 0.81). The total amount of hydrocarbon was about 15 mg from 2.9 kg of dry lichen.

The manner in which the substance was obtained seemed to justify the assumption that it was a hydrocarbon, and the high m. p. suggested a polycyclic one. A triterpene was not ruled out, and inspection of the literature indicated that identity with skimmiea III might exist. The chemistry of taraxerol (skimmiea) is presently being investigated by Dr. C. J. W. Brooks, compare 4. Dr. Brooks incidentally learned of this possible identity through Dr. P. de Mayo, and very kindly provided a sample of taraxerene, which, although, strictly speaking, it has not been proved, is very likely identical with skimmiea III and which he had recently prepared by Wolff-Kishner reduction of taraxerone, and for which he reported m. p. 238–240°C (strong sublimation), [α]D + 3°, very sparingly soluble in chloroform, in agreement with our observations on the hydrocarbon from _Cl. deformis_. Taken at the same time the hydrocarbon from the lichen,

* All rotations in chloroform in a 1 dm tube.

*** Note added in proof: Weissensberg diagram of skimmiea II a, very kindly provided by Dr. K. Takeda, showed identity with taraxerene.
The author is glad to have this opportunity to express his gratitude to Professor N. A. Sörensen for help in collecting the lichen and for the interest he has taken in the work.

A fellowship from Norges Almennostiokpes-ke Forskningsråd is gratefully acknowledged. A grant from A/S M. H. Lundgren’s Enke’s Fond covered some of the expenses.

Received July 21, 1954.

The Biosynthesis of Riboflavin in Eremothecium ashbyii

LEIV KULNGSYR

Biochemical Laboratory, University Clinic of Bergen, Norway

The hypothesis of MacLaren that a substance with purine structure is utilized for the synthesis of riboflavin by E. ashbyii, is supported by recent work by Goodwin and Pendlington and by Klungsøy.

Previous studies have shown that the carboxyl group of acetic acid is incorporated into the position 2 of the isoalloxazine part of the riboflavin molecule. This observation was taken as indirect evidence of the utilization of a purino intermediate.