Crystalline Rhodanese

BO H. SORBO

Biokemiska Audelningen, Medicinska Nobel-institutet, Stockholm, Sweden

Recently we reported a method for the partial purification of rhodanese from beef liver. The enzyme has now been further purified and obtained in the crystalline state.

The method of purification was as follows: Beef liver was extracted and the extract fractionated with ammonium sulfate at pH 3.8 and 7.8 as described before. The enzyme was then dialyzed against 0.01 M sodium acetate and the pH of the dialyzed solution adjusted to 4.9. Fractionation with acetone was then carried out at −5°C and the precipitate appearing between 30 and 50% by volume acetone was collected and dissolved in cold 0.01 M sodium acetate. The remaining acetone was removed by dialysis against 0.01 M sodium acetate. The pH of the solution was then adjusted to 4.5, the enzyme precipitated with ammonium sulfate at 40% saturation and the precipitate dissolved in 0.01 M sodium acetate. When a 0.5% solution of this preparation was examined in the “Spinco” ultracentrifuge of this department, only one homogeneous boundary with $S_{20} = 2.76 \times S$ was observed. The solubility of a similar preparation in ammonium sulfate of varying concentration was then studied at room temperature and pH 5. The logarithm of solubility for the enzyme was found to be proportional to the concentration of ammonium sulfate. An amorphous precipitate was obtained, but when those supernatants, which still contained enzymatic activity were brought to +2°C, a pronounced prethixotropy slowly developed. No crystals were, however, visible in the microscope, but later experiments showed, that rhodanese could be crystallized from ammonium sulfate at

Acta Chem. Scand. 7 (1953) No. 1
A detailed report will be published in a near future.

 Received January 26, 1953.

On the Principle of Thermal Interaction

Jan Krogh-Moe

Institutt for Teoretisk Kjemi, Norges Tekniske Høgskole, Trondheim, Norway

In a recent work Holta states a principle of thermal interaction: "In a non-isothermal process there is an interaction between the flow of heat and the transport phenomena in such a way that the loss of work (loss of potential energy) for the transport of entropy bound to chemical substance can be compensated partly or completely by the transport of free entropy contained in the flow of heat in the opposite direction."

This principle is embodied in the principle of least dissipation of energy. It is thus possible to prove the principle of thermal interaction for the cases where the principle of least dissipation of energy is valid. The restrictions and variations with respect to which the dissipation is a minimum, are stated by Wergeland.

For a process under consideration we can split the total rate of increase \(\dot{S} \) in the entropy of the system in two parts:

\[
\dot{S} = 2\Phi - \dot{S}^* \]

In the stationary state \(\dot{S} \) will be zero, and the dissipation function \(\Phi \) can be shown to be a minimum. Consequently the total flow of entropy across the surface of the system, \(\dot{S}^* \), will be a minimum.