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On the Use of Rayleigh-Philpot-Cook Interference Fringes

for the Measurement of Diffusion Coefficients

»

HARRY SVENSSON
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t is known that certain types of interferometers in conjunction with an

optical device for making an image of a certain object are capable of giving
interferometric patterns which are to be regarded as topographic maps of the
object, each interference fringe indicating a change of the optical thickness of
one wave-length. This fact was made use of by Labhart and Staub ! for electro-
phoresis measurements. They used a Jamin interferometer. Later, Lotmar 2
has presented a number of possible optical arrangements more or less based on
the Michelson interferometer.

In the Rayleigh interferometer, it is necessary to produce an image of the
light source slit. Hence the possibility of producing a topographic map of an
object does not exist in this case because the introduction of a lens focused on
the object would destroy the interference phenomenon altogether. However,
using an astigmatic optical system, it is sufficient to produce an image of the
slit in the plane perpendicular to it; in its own plane, it need not be in focus.
Consequently, in the image of the slit, the dimension along the same is free
for the production of an optical image of the object. Hence it is possible,
using the Rayleigh interferometer, to obtain one-dimensional interferograms
of an object whose optical thickness does not vary in the direction perpen-
dicular to the slit. Since in diffusion cells, electrophoresis cells, etc., the optical
thickness is constant along a horizontal line, it is evident that a Rayleigh
interferometer in combination with an astigmatic optical system is capable
of yielding exact information of the refractive index course along the vertical
coordinate.

This fact was first understood and tested experimentally by Philpot and
Cook 3 and, independently, by the present author4*. It has later been found

* Added in proof: Rogener describes in a recent article (Kolloid-Z. 118 (1950) 10) an optical
system which was designed in the years 1943/44 and which, to judge from the interferograms
published, works according to the same principles as the Philpot-Cook system. However, the
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that the optical system widely used for more than 10 years in electrophoretic
measurements, the diagonal slit method, serves the purpose as well (Svens-
son 8). The integral fringe method, so called because it gives directly the
refractive index function and not the derivative, has already been tested by
Longsworth ¢ in connection with an investigation of two new types of dif-
fusion cells, and its importance in electrophoresis has also been stressed by
him (Longsworth 7). The present author has not until now had the opportunity
of making methodical experiments with the new method. In this paper, the
use of the integral fringe method for the determination of diffusion coefficients
by the height-area method will be described. In addition, the method of
computation used by Longsworth will be considered. ’

EXPERIMENTAL

The optical system of the diagonal slit method (see Svensson 3, Fig. 1)
was used in this investigation with the modification that the light source slit
was vertical and the diagonal slit removed. On adjusting this system, it was
found that the angular orientation of the cylindrical lens was very critical,
much more than in the diagonal slit method. By screening off the slit to essen-
tially a point source, however, the fringes could always be easily found. Then
the point source was gradually extended to a slit, the cylindrical lens being
turned a little after each increase in length in order to retain the fringes. After
the slit had been opened to its total length again, a final adjustment of the
cylindrical lens gave fringes as bright and well-defined as in the optical system
originally suggested by Philpot and Cook.

The diffusion cell was the flowing-junction cell which was described in an
earlier publication (Svensson 4). It is very similar to the stainless steel cell
recently described by Longsworth ¢, the main difference being that the suction
slit of the latter can be closed. Unfortunately, no thermostat was available
during these experiments, but they were carried out in an underground room
without windows and with a remarkably constant temperature. Distilled
water was constantly stored in this room, and the preparation to be studied
was dissolved in this water an hour or two before the experiment was started.

very essential feature of producing an optical image of the cell in elevation is not mentioned in
the text, nor is it evident from the optical arrangement. Possibly Rogener’s second slit-focusing
lens serves this purpose also. Roégener’s earlier arrangement (Kolloid-Z. 105 (1943) 110) works
with horizontal slits and is more related to the Gouy interference method than to the Philpot-
Cook method.

An attempt to use the Rayleigh interferometer for diffusion studies has also been made by
Kroepelin (Sitzungsber. physikal.-med. Soz. Erlangen 58/59 (1926/27) 237), yet without any cell-
focusing device.
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Care was taken not to warm up the water or the diffusion cell by touching or
by radiation from the body. A thermometer placed close to the cell showed,
in general, a variation in temperature of less than 4- 0.1° C during an experi-
ment.

Cane sugar (Merck) of analytical purity was chosen as the test substance.
Very accurate measurements of the diffusion of this preparation have recently
been performed by Gosting and Morris 8.

As also recommended by Longsworth ¢, the first fringe photograph was
taken before starting, with both solutions still flowing through the exit slit.
This photograph was subsequently used for measuring the fractional part of
the total fringe displacement between top and bottom solutions. The time
for closing the stop-cock in connection with the exit slit was noted as the experi-
mental zero time of the diffusion. Five to eight exposures were taken during
the diffusion process, the last one 14 000 to 16 000 seconds after the start.

The cross section of the diffusion channel was round 3 X 50 mm? The
reference channel was filled with distilled water.

COMPUTATION OF THE DIFFUSION COEFFICIENT BY THE HEIGHT-AREA
METHOD

This method makes use of the equation:

2
Dot )
7t nmax(x)

where n, and n, are the refractive indices of the two solutions, # the time, and
Moy (%) is the maximum derivative of the refractive index function with respect
to the position in the cell. Since a fringe is, in this case, as good a unit of
refractive index as any other, and since n is present in the same power in
numerator and denominator, the readings need not be recalculated to real
refractive index units. Consequently the calculation can be carried out
without knowledge of the thickness of the cell.

The integer part of the total fringe displacement was counted from any one
of the later exposures, while the fractional part was measured from the first
exposure in a comparator with a cross-motion arrangement for the table.
The plate was aligned in the comparator so that the hair-cross in the micro-
scope, on moving the table cross-wise, followed the middle of a fringe along
the whole half-cell on one side of the boundary. The distance between the
hair-cross and that fringe on the other side of the boundary which was last
passed by it on bringing this side into view, was then measured by moving the
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table in the direction of the micrometer screw (perpendicular to the fringes).
Similarly, the distance between two consecutive fringes was measured. This
measurement should be carried out across the original position of the hair-
cross since the distance between fringes varies somewhat across the interfero-
gram, especially if the number of fringes is small. This is explained by the
fact that the outer fringes are situated on the sloping light intensity curve in
the central diffraction band. The ratio between the two distances thus meas-
ured is the fractional part of the total fringe displacement. It could be
measured with a reproducibility of 0.02 fringes.

The experimental determination of the maximum derivative is more
difficult. Taking the differences between consecutive readings and inverting
them gives rise to large accidental errors and too large a spreading in the resulting
derivative curve. On the other hand, taking the differences between, say,
every tenth fringe and dividing 10 by them, is likely to give little spreading
but serious systematic deviations from the true derivative. Plotting the inte-
gral curve and using a mechanical differentiator gives an accuracy far behind
that inherent in the interferogram. :

In order to find the best way of computing the maximum derivative, we
will study the systematic deviation from the true derivative resulting from
taking too large differences in the numerical differentiation. In every numer-
ical differentiation, the quantity 4n/4x is measured. By writing this quantity
in the form:

An  n(x + 4z/2) -n(x——Ax/2)
Ax aw

(2)

and by development into powers of 4z, we get the following third-order approxi-
mation:

n_ wiey +

Az 24 () ®)

If we require that the third-order term be less than a certain fraction g of the
main term, we get the condition:

24 o n'(x)
I/ I(z)

(4=)? < (4)

At the top of the Gaussian curve this reduces to:

(4z)? < 48 ¢ Dt | (5)
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Table 1. Determination of the maximum derivative.

Comparator reading dx for An =5

mm mm
23.287
23.729
24.132
24.546
24.930
25.312 3.799
25.673 3.709
26.051 3.643
26.380 3.576
26.748 3.513

ﬁ 27.086 3.469
27.438 3.462
27.775 3.439
28.122 3.435
28.443 3.433
28.781 3.420
29.135 3.435
29.490 3.449
29.815 . 3.497
30.181 3.522
30.506 3.585
30.873 3.643
31.224 3.707
31.619 3.793
31.965
32.366
32.778
33.197
33.608

This is the condition in terms of the abscissa increment that has to be satisfied
in a numerical differentiation with the precision g. For the interferograms in
question, however, it is more convenient to have a condition in terms of the
ordinate increment since the ordinates are integers. Consequently, we intro-
duce the value of 4z according to (5) into the numerator of (2) and get:

An = Az 0/ (x) = (n;—n,) VHTQ (6)
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For a precision of 1 part in 1 000, therefore, we get a permissible ordinate
difference of 0.062 (n;—ny), . e., with 50 fringes between the two solutions,
one can measure the distance between every third fringe without introducing
a greater relative error than 0.1 per cent. However, the author prefers to use
still greater ordinate differences and to apply the correction g according to the

equation:
_m (A 7
=12 \n,—n, (M

If the correction is allowed to rise to one per cent, it is possible to compute the
maximum derivative using ordinate differences of 20 per cent of the total
refractive index change. The relative accidental errors are then extremely
small. Tt should be noted that the correction (7) is independent of the time.

The procedure that has been followed in the determination of the maximum
derivative is consequently the following. After the plate had been aligned on the
comparator table, every fringe or half-fringe was measured throughout a region
round the centre of the boundary comprising about 40 per cent of the total
number of fringes. The readings were written down in a table, and the differ-
ences between every mth fringes were taken, the integer m being chosen in
each case to give a correction g of about one per cent. The differences were
plotted against the fringe number in a diagram, and a smooth curve was
drawn through the scattered points. The minimum of this curve was read.
Division of the integer m by this minimum gave the approximate derivative
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Table 2. The calculation of diffusion coefficients by the height-area method.

Maximum Inverted . .
Time derivative and squared Time . Time
see. fringes maximum calculated discrepancy
per cm derivative sec. sec.
187 93.47 0.0001145 166 + 21
480 60.15 0.0002764 469 + 11
1080 40.44 0.0006115 1097 — 17
2220 28.68 0.0012157 2228 — 8
3180 24.02 0.0017332 3197 - 17
5640 18.18 0.0030256 5617 + 23
8580 14.73 0.0046089 8582 - 2
Equation of the line: n'2(z) (¢ + 48) = 1.8725 . 108

according to (2), and finally the correction (7) was computed and applied to
give the true derivative.

Table 1 and Fig. 1 give a typical example of such a calculation. The un-
certainty in the minimum value of Az is round 0.003 mm, which is consistent
with the sharpness of the fringes and their separation. The relative accidental
error, therefore, becomes of the order of 0.001.

The data in Table 1 are taken from an experiment with an 0.2 per cent
sugar solution diffusing against water. With the cell used, round 50 mm thick,
this gave 26.43 fringes. In all exposures, the ordinate increments used in the
differentiation were 5 fringes, and the correction applied was ¢ = 0.0094.
In Table 2, the first column gives the experimental times from the start of the
diffusion, whereas the second column gives the corrected maximum derivatives.
In the third column, we have the squared and inverted values of the maximum
derivatives, which, according to equation (1), should be proportional to the
time. After having controlled in a plot that no point deviated seriously from
a linear relationship between the data in the columns 1 and 3, the equation of
the straight line that best satisfied the data was computed with the aid of the
method of least squares. The constant term in this equation is the zero-time
correction, which serves as a quantitative measure of the quality of the start-
ing boundary and of the reliability of the experiment as a whole. The second
parameter of the equation of the straight line is the slope, which was inserted
into equation (1) to give the diffusion coefficient. The two last columns in
Table 2 contain the times calculated from the equation of the straight line and
the discrepancy between them and the experimental times. The latter is in
no case greater than the time of exposure, 30 seconds.
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Table 3. Results.

79

Sugar Total Mean . Diffusion
concen- fringe tempera- Zero-tlfne constant
tration displace- ture correction cm?/sec. Remarks
per cent ment °C seconds . 108
0.2 26.43 20.6 46 5.231 | Two calculations of
48 5.221 the same material
0.5 66.33 21.1 21 5.250
0.5 66.33 21.5 52 5.198
0.5 67.80 21.65 8 5.201
0.5 67.16 20.6 63 5.234
0.75 98.46 20.5 59 5.246
0.25 33.81 20.3 55 5.301 Large temperature
variation
0.5 67.1 20.1 63 5.38 The same, and bad
starting boundary

In all, eight experiments were carried out. In order to compare the diffu-
sion constants obtained with the values given by Gosting and Morris 8, correc-
tions were applied to zero concentration using Gordon’s relation and to 25.0°C
using Stokes-Einstein’s relation (see Gosting’s and Morris’ paper). These
data are given in Table 3. The first column gives the concentration of sugar,
the second the total number of fringes, the third the temperature, the fourth
the zero-time correction, and the fifth the diffusion constant corrected to
zero concentration and to 25.0 °C.

DIRECT COMPUTATION OF THE DIFFUSION COEFFICIENT FROM THE
POSITION OF THE INTEGRAL FRINGES

The numerical differentiation of the refractive index function in the cell
in order to use equation (1) may seem to be a somewhat round-about way
since the integral of the error function is well known and available in mathe-
matical tables. By direct comparison between the coordinates of the
fringes and a table of the integral function it is possible to derive a
value of the diffusion constant for each fringe or half-fringe. This method,
which was originally suggested by Gosting and described by Longsworth 8,
is, like the former method, based on the assumption that the diffusion is ideal,
but it is capable of showing up deviations from the ideal behaviour very
clearly since calculations can be carried out from every part of the curve.

The procedure adopted by the author was the following. The interferogram
in question was aligned in the comparator so that the fractional part of the
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Table 4. Normal analysis of the boundary.
(ny—ny = 66.33)

Fringe Comparator Plate .
numbir rea,lt)iing M z coordinate Discrepancy
() mm MMy calculated ’
0.5 16.460 0.98492 1.7186 16.462 - 2
1 17.955 0.96985 1.5331 17.942 + 7
2 19.579 0.93969 1.3283 19.577 + 2
3 20.615 0.90954 1.1971 20.624 - 9
4 21.404 0.87939 1.0976 21.418 — 14
6 22.613 0.81908 0.9461 22.627 — 14
8 23.564 0.75878 0.8287 23.565 — 1
10 24.350 0.69848 0.7306 24.348 + 2
12 25.028 0.63817 0.6448 25.032 — 4
15 25.938 0.54771 0.5315 25.937 + 1
18 26.751 0.45726 0.4304 26.744 + 17
21 27.489 0.36680 0.3375 27.485 + 4
24 28.190 0.27634 0.2500 28.183 + 7
27 28.853 0.18589 0.1663 28.851 + 2
30 29.513 0.09543 0.0848 29.502 + 11
35 30.577 — 0.05533 0.0491 30.571 + 6
40 31.658 — 0.20609 0.1847 31.653 + .5
43 32.325 — 0.29655 0.2692 32.327 — 2
46 33.036 — 0.38700 0.3577 33.034 + 2
47 33.281 — 0.41716 0.3884 33.279 + 2
50 34.054 — 0.50761 0.4855 34.054 0
53 34.904 — 0.59807 0.5927 34.909 )
55 35.540 — 0.65837 0.6724 35.546 — 6
57 36.255 — 0.71868 0.7618 36.259 - 4
59 37.076 — 0.77898 0.8654 37.086 — 10
61 38.080 — 0.83929 0.9919 38.096 — 16
63 39.447 — 0.89959 1.1617 39.451 — 4
65 41.782 — 0.95990 1.4515 41.764 + 18
66 * 44.885 — 0.99005 1.8227 44.726 + 159

* Excluded from the treatment by least squares.

fringe number became the same as that measured in the exposure of the
flowing boundary. Then the position of a great number of fringes (the measure-
ment and computation of every intensity maximum and minimum is generally
too time-consuming) was measured throughout the entire interferogram. In
Table 4, the first column gives the number of the fringe (number 0 being that
fringe with which the hair-cross of the microscope coincided outside the bound-
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ary), and the second column contains the comparator readings. The third
column is headed (n,—n;—2v)/(n,—n,) and is the fraction of the total area
of the error curve enclosed between the comparator reading and the sym-
metrically situated coordinate on the other side of its centre. In a Table of the
integral function, the values of the independent variable corresponding to
these figures were found by interpolation, column 4. The figures in the
columns 2 and 4 should now show a linear relationship, which was controlled
in a plot. The readings of the first and last fringes, running almost parallel to
the micrometer screw, are naturally very inaccurate and must often be dis-
carded. The rest of the points were treated by the method of least squares to
get the equation of the straight line. The plate coordinates corresponding
to this line are presented in column 5, and the discrepancies between them and
the observed values, column 2, are given in column 6. With few exceptions,
they are smaller than 1/50 of the distance between consecutive fringes. This
means that, in this particular case, the concentration distribution in the
boundary was that required by the law of ideal diffusion.

From the slope of the line, the diffusion constant can be calculated with
the aid of the equation:

a2

D= ®)

and these values check reasonably well with those obtained by the height-
area method. However, to get good results the zero-time correction has to be
applied, which necessitates the complete evaluation of all exposures according
to the above procedure or to use the zero-time correction derived from the
height-area method. Since the former alternative would be too time-con-
suming, the author has restricted the use of that method to one exposure in
each experiment in order to control the shape of the boundary. Even if the
method of least squares is omitted, the interpolation of a great number of
data in the table of the integral function remains and is very laborious.
Although the method is more direct than the height-area method, the differen-
tiation being omitted, it requires much more work.

DISCUSSION

If the two last experiments in Table 3 are excluded, the individual dif-
fusion constants deviate from the mean value, 5.226 . 1078, by less than 0.5
per cent. The value given by Gosting and Morris for 24.95 °C is 5.224, which
yields 5.231 at 25.0 °C. The latter figure is 0.1 per cent higher than the mean
value from Table 3. Taking into consideration that these experiments were
6
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carried out without thermostating and that great temperature corrections
have been applied, the conclusion seems justified that the new method of
observation is capable of a precision that can be compared with that of the
Gouy method. Moreover, the results seem to indicate that accurate tem-
perature regulation is not as essential in diffusion measurements as is generally
believed.

From the normal analysis of the boundary carried out as suggested by
Gosting and Longsworth directly from the integral fringes and as demon-
strated in Table 4, two interesting conclusions can be drawn. First, the exact
linear relationship between the comparator readings and the quantity z shows
that Longsworth ¢ was right when he blamed the cylindrical lens for the non-
linear relationship found by him. In his optical system, which was identical
with that originally described by Philpot and Cook, an uncorrected cylindrical
lens was used at a comparatively high relative aperture (axis horizontal,
point source). In the present investigation, the cylindrical element had its
axis parallel to the light source slit, hence it was active at a very low relative
aperture. In addition, it was spherically and chromatically corrected.

The possibility of using the diagonal slit method simultaneously with the
integral fringe method, as discussed in reference 5, also speaks in favour of
that optical system. However, if no use is made of the diagonal slit method,
there is no point in using the longer optical system required by the two-fold
image formation of the light source slit. In such cases, other ways of restrict-
ing the relative aperture of the cylindrical lens should be tried. One possibility
is to use an astigmatic lens system composed of a spherical objective and a
negative cylindrical lens with a vertical axis. The spherical objective, then,
is focused on the cell and the compound objective on the light source slit. The
conditions for interference are then again fulfilled.

The second conclusion that can be drawn from the normal analysis is that
the diffusion cell is working satisfactorily. It is certainly free of leakage since
there are no sliding parts. The optical precision is good; clamping of windows
in general gives rise to less distortion than does cementing. The small volume
of solution which is left in the exit slit and which could be feared to cause
trouble by back-diffusion has been found to be unimportant. These conclusions
are in agreement with Longsworth’s tests of similar diffusion cells of the
flowing junction type.

The method of direct computation of the diffusion constant by comparison
with the tables of the integral of the error function renders good service as a
method of normal analysis. As a method of calculating the diffusion constant,
it involves an excessive amount of work if use is made of every fringe in every
exposure. In Table 4, only 29 readings were taken out of 133 possible read-
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ings. The number of readings can of course be reduced still more, with a
corresponding reduction of the numerical calculations, if the diffusion is ideal.

The calculation with the aid of the height-area method is fairly rapid. It
involves the measurement, under standard conditions, of some 20 fringes,
taking and plotting of some 10 differences, and some numerical work with the
minimum difference, everything in each exposure. The determination of the
total fringe displacement is simple. The work is not in any way overwhelming,
yet it would be very advantageous with a more convenient way of determining
the maximum derivative. The differential interference refractometer described
recently (Svensson ?) will probably be valuable in this respect. It requires
only four plano-parallell glass plates in addition to the optical equipment of
the integral interferometer. From the differential interferogram, the maximum
derivative (as well as the derivative in any point) can be directly measured.
The use of this method, in combination with the integral fringe method, will
be described in a forthcoming communication.

A comparison between this type of interferometer and those giving the
optical path differences as functions of both dimensions in the cell mentioned
in the beginning of this article reveals the following. In the case of optical
distortions along horizontal lines in the cell, the Rayligh-Philpot-Cook inter-
ferogram is blurred, and it will be necessary to use only a narrow vertical
strip of the cell for the optical analysis. With a Michelson or Jamin inter-
ferometer, direct information of the lateral distortions in the cell is gained, and
no blurring of the fringes occurs. On the other hand, the Rayleigh-Philpot-
Cook interferometer has two great advantages, that of permitting direct photo-
graphing of the refractive index function, and the possibility of measuring
small fractions of a wave-length. The arrangement described by Labhart and
Staub ! has the former advantage, but not the latter, while that described by
Antweiler 1° possesses the latter advantage, but not the former. Fractions of
wave-lengths, however, can be measured in Labhart’s and Staub’s arrange-
ment by visual observation during the experiment if Antweiler’s device for
that purpose is introduced. Correspondingly, Antweiler’s arrangement permits
photography if a monochromatic light source is applied. In no case, however,
can fractions of wave-lengths be measured on the photographic plates.

SUMMARY

The use of the interference refractometer devised by Philpot and Cook in
diffusion measurements has been submitted to experimental tests. Although
a differentiation is necessary, it has been shown that the conventional height-
area method of computing diffusion coefficients can be used successfully. A
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detailed description of a method for the accurate determination of the maxi-
mum derivative of the refractive index in the cell has been presented.

The direct comparison between the fringe distribution with tables of the
integral of the error function, as suggested by Gosting and Longsworth, has
also been tested, and the results discussed.

The influence of too poor a correction of the cylindrical element of the
optical system has been discussed in relation to the relative aperture of this
lens. Optical systems have been proposed in which the cylindrical element
is working at a very low relative aperture. In such systems, it should be
possible to get satisfactory results even with simple cylindrical lenses.

This investigation is part of a research program for the development of improved
methods of optical analysis of stationary and flowing liquids, which program is generously
supported by the Swedish Technical Research Council. Laboratory facilities and addi-
tional financial aid has been given by LKB-Produkter Fabriksaktiebolag, Stockholm,
which is also gratefully acknowledged. For valuable assistance the author is indepted to
Mr. Karl Odengrim.
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