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The Number of Isomeric Aliphatic Hydrocarbons
E. RANCKE-MADSEN

Chemistry Department A, Technical University of Denmark, Copenhagen, Denmark

rom time to time papers dealing with the problem of calculating the num-

ber of isomeric aliphatic hydrocarbons have been published. In the pre-
sent paper recursion formulas for the calculation of isomeric hydrocarbons
of the acetylene series and the ethylene series — with and without taking into
consideration stereoisomerism — will be derived. These formulas presuppose
the knowledge of the number of isomeric univalent radicals of the methane
series, and these numbers are therefore mentioned in the sections I A and IT A.
The new formulas have been arrived at in I B, I C, IT B and II C.

SYMBOLS USED IN THE PRESENT PAPER

n = the number of carbon atoms in a hydrocarbon molecule.

R, = the radical C, H,,,;.

D = the number of isomeric primary radicals R,

S, = » » » » secondary » R,

t, = » » » tertiary » R, without taking
T, = » » » » radicals R, stereoisomerism
A, = » » » » alkanes C,H,,, , into account.
E, = » » » » alkenes C,H,,

I, = » » » » alkines C, H,, »

. = » » stereoisomeric 4 non-stereoisomeric alkines.

I(s), = » » » » alkines.

I(ns), = » » » non-stereoisomeric alkines.

E,, E(s),, E(ns),; 9, p(8),, p(ns),; etc. are defined in the same manner.
a, b, c d, g, b, j, v and y are integers > 0.

In many of the following formulas certain terms have to be left out for
special values of n. It turns out that this happens for such values of n for
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which the subscripts in the terms are fractions: E.g. in formula (2) the last
: -1
term should be left out for such values of » for which the subscript &—2— is a
fraction; that is for all even values of #». This is indicated in the formula by
applying the factor A to the last term. 4 is in other words a function of n.
It takes the values 1 or 0, according as the subscripts in the term to which 4

is applied are integers or not.

I. STEREOISOMERISM NOT CONSIDERED

A. Hydrocarbons of the methane series (alkanes). In 1875 Cayley ! tried
to derive a formula by which the number of isomeric alkanes C,H,,, , could
be calculated, and later on several attempts have been made to solve the prob-
lem (the literature until 1931 is reviewed by Henze and Blair 2:3). In 1931
Henze and Blair 3 succeeded in solving the problem by first deriving recursion
formulas for the number of isomeric alcohols R,OH classified in primary,
secondary and tertiary alcohols 2.

From the definition of p,, s,, f, and T, it follows that
Tn =P, + 8, + 1,

Henze and Blair found *):

Pn = Ly (1)
and C e =S T, T, A} Taae (Taa + 1) @)
2 2
a<b
a+b=n—1

and they also found a formula for ¢,, which is of no interest for this paper.
Using these formulas and the value 7', = 1 it was possible to compute T,
T,, T,,... Henze and Blair thereafter gave direction for computing A,,
using the values of T, T, ... T, and for computing 4,,,, using the values
of Ty, Ty, ... Ty

Using Henze and Blairs’ formulas the numerical values of 7, p,, s, and
t, for n < 30 were published %4, and the numerical values of 4, for n < 40
and for » = 60 were also published 34,5,

* These and later formulas by Henze and Blair or others are here expressed in & more con-
cise form than in the original papers.
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B. Hydrocarbons of the acetylene series (alkines). Coffman, Blair and
Henze ¢ have calculated the number of isomeric alkines. They considered
R —C=C—R’, where at first they assumed R to represent a hydrogen atom
and at the same time R’ an arbitrary radical R, ,. Afterwards they assumed
R and R’ to represent two radicals R, and R;, where ¢t <jand ¢ + j = n —2.
The three authors found:

IL,=T, o+ 2T Tj+ A} Tna- (To2+ 1) (3)
2 2
P <j
i+j=n—2

However, this formula can be rewritten by means of (1):

Lﬁ=m4+-2m-m+%-%p,%%—%n
2

1<g<h
g+h=mn
and using

Ppa=D1"DPpa

we get:
In=ng'ph+l'%'p;_ (p%"}_l) (4)
g<h
g+h=n

The formula (4) may be derived directly from the following consideration.
An alkine may be considered as consisting of two primary radicals R, and
R,, in which two hydrogen atoms are removed from the primary carbon atom
in R, as well as in R,, and thereafter the two resulting tervalent radicals are
joined in a triple bond. This gives for » odd:

In=p1'pn—1+p2'pn—-2+ --------- +p”;1‘pﬂi1 (431)
and for » even:
L= Ppa+ P Prat ovoonn.. + pr—2-pry2 + 1 p, (P, + 1)

The content of (4a) and (4b) is included in (4).
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However, formula (4) can be further simplified. From (2) it follows that

s,,;1=ZT.--T,-+1-%-T»2;z (T2 + 1)
i <j
T+ j=n—2

and using (1) we get:

8,._1=Zpg-p;.+l-v’z-p%-(p%+l)
1<g<h
gth=mn

or since

Pr° Py = Pua

we get:

%4=—ﬁ%r+2%'%+lﬁ"%'@%+n
g<h
g+h=mn

which compared with (4) gives:

I,=p, 3+ 8 (5)

Formula (5) may also be derived in the following manner. In the isomeric
alkines C,H,, , @) a terminal carbon atom takes part in the triple bond, or
B) no terminal carbon atom takes part in the triple bond. Alkines of type
@ may be derived from the primary radicals R, ; by removing two hydrogen
atoms from the primary carbon atom, and thereafter attaching the resulting
tervalent radical to = C—H; this procedure results in p, , different alkines.
Alkines of type # may be derived from the secondary radicals R,_; by re-
Ra\ /I-I

c >
Re/ AN
after attaching the resulting tervalent radical to = C—R,; this procedure
results in s, , different alkines.

Numerical values (found in literature 8) of I, for n» < 30 are checked by
means of formula (5).

moving the hydrogen atom and the radical R, from and there-
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C. Hydrocarbons of the ethylene series (alkenes). Henze and Blair 7 have
calculated the number of isomeric alkenes. They divided the problem into
four parts, in accordance with the fact that all alkenes may be considered as
derived from H,C = CH, by substituting 1, 2, 3 or 4 hydrogen atoms by suit-
able radicals. In this manner the authors found a rather complicated method
for calculating Z,, a method which may be carried through when 7', is known
for z < n—2.

However, a simple formula may be derived in a very direct manner as
follows. We may think of an alkene as a hydrocarbon built up in the following
way. From a primary or secondary radical R, a hydrogen atom is removed
from the primary or secondary carbon atom; and the same is done in the pri-
mary or secondary radical R,. By joining the two resulting bivalent radicals
in a double bond an alkene is produced. From this it follows that

E, =3 (pg+s,)-(p,+sh)+1-%-<p%+s%)-(p§+s;+1) (6)
g<h
g+h=n

which by means of (5) can be rewritten as:

E,,=214-Ib+z-%-1~7+z-<l,%g+l> (7)

l1<a<b
a+b=mn-42

Numerical values (found in literature 7> 8) of E, for n < 20 are checked by
means of formula (7), and the following values are calculated for n < 30
(Table 1).

Table 1. The number, B,, of isomeric alkenes (not considering stereoisomerism ) with n
carbon atoms (20 <n X 30).

n E, n E,

21 11 062 046 26 1423 665 699
22 29 062 341 27 3 788 843 391
23 76 581 151 28 10 103 901 486
24 202 365 823 29 26 995 498 151

25 536 113 477 30 72 253 682 560
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II. STEREOISOMERISM CONSIDERED

A. Alkanes. Blair and Henze have derived formulas for computing stereo-
isomeric and non-stereoisomeric primary, secondary and tertiary radicals?
and thereafter formulas for computing stereoisomeric and non-stereoisomeric
alkanes 1. The chain of reasoning was analogous to that used by the authors
in the case where stereoisomerism was not taken into account 2> 3, but the
computations were for good reasons more complicated. The authors pu-
blished 1! the numerical values for 1",, T'(s),, T'(ns),; P(8),, P(nS),; $(8),, 8(ns),;
i(s),, t(ns), for n < 20; and also 2 for 4’,, A(s),, A(ns), for n < 20.

The following formulas taken from Blair and Henze are of interest for
this paper:

Pa=T, (8a)
p(ns), = T(ns), (8b)
§y=2. 2T, T+ A (T'wa)? for n > 1 (9)
a<b ’
a+b=mn—-1

B. Alkines. Coffman 1* has calculated the number of stereoisomeric and
non-stereoisomeric alkines. The chain of reasoning was (apart from the fact
that it was more complicated) the same as by Coffman, Blair and Henze 8,
where stereoisomerism was not taken into account.

However, the considerations can be carried through in a more straight-
forward manner if the method which led to the formula (4) is used. No stereo-
isomerism is destroyed through joining two tervalent radicals, and therefore
the following must be true:

II"= zp'g‘p'h‘l‘l'%’P';' (p,n + 1) (10)
2
g<h
g+h=mn

A non-stereoisomeric alkine must necessarily be derived from two non-
stereoisomeric radicals, and therefore we have:

I(ns), = > p(ns), - p(ns), + A+ % - p(ns), - (B(ns), + 1) ' 11)
g<h
g+h=n
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Finally I(s), is found by subtraction:

I(s), = I', —I(ns), =
Z@}P}-MMMPW%%+L%4M§%M%+J-Mm§+U (12)
g<<h

g+h=n

The contents of the formulas given here correspond to the results obtained
by Coffman 1. However, formula (10) can be even more simplified. From
(9) it follows that

$ya =221, T +A-(T'»2)? for n>2

2
1 <j
t+j=n—2

Using (8a) we get:

$pr=2- Zp'g-p'hw.(p',%)z for n > 2

I1<g<h

g+h=n
or since

’ !’ !
P1 Ppa=DPua
we have

8In—1=_2'p,u—1+2'zp’g'p’h_"l'(pl_;_)z fOI‘n>2

g<h
gt+h=n

which compared with (10) gives:
I'n=p,»—1+%'8'»—-l+l'%'p’n for n > 2 (13)
z

This formula is valid for n > 2, but it is easily found that I’, = 1.

Formula (13) may also be derived as follows. In the isomeric alkines
C,H,, , @) a terminal carbon atom takes part in the triple bond, or 8) no
terminal carbon atom takes part in the triple bond. Alkines of type & may be
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derived from the primary radicals R,_; by removing two hydrogen atoms
from the primary carbon atom, and thereafter attaching the resulting terva-
lent radical to = C—H. By so doing no stereoisomerism is destroyed, and
this procedure results in p’, , different alkines. Alkines of type f may be
derived from the secondary radicals R, ; (where » > 2) by removing the
Ra\ /H
C

R \

ing the resulting tervalent radical to = C—R,. By this procedure the number
of asymmetric carbon atoms is reduced by one except in the cases where R,
is identical with R,, and this occurs only when = is even, and in that case

hydrogen atom and the radical R, from , and thereafter attach-

9 .
a=>b= &;— Identical groups will be attached to the secondary carbon

atom of the radical R, ; in 7'»—2 = p’, number of cases. And therefore the
2 7
number of alkines belonging to type f must be:

%'(8'n—1——1'p,n)+}"p'n =%'8'n—1+1'%'p',n
2 k) -7

Numerical values (quoted in the literature ') of I’,, I(ns), and I(s), for
n < 22 are checked by means of (13) and (11).

C. Alkenes. This section will deal with the computation of 1) E’,, 2) E(ns),,
and 3) H(s),.

1) The total number of stereoisomeric and mon-stereoisomeric alkenes, E'™.
" A formula for computing E’, can be derived by a method analogous to that
which led to formula (6). We may think of an alkene as a hydrocarbon built
up in the following way: From a primary or secondary radical R, a hydrogen
atom is removed from the primary or secondary carbon atom; and the same
is done in the primary or secondary radical R,. By joining the two resulting
bivalent radicals in a double bond an alkene is produced. These bivalent
radicals belong to one of the following two types:

a) The radicals in which two identical groups are attached to the carbon
atom which takes part in the double bond, -

B) the radicals in which two identical groups are not attached to the car-
bon atom which takes part in the double bond.

@) Let the radical of type e contain z carbon atoms.

For & = 1 there will be only one radical, namely H,C<.

For x odd and > 1 there will be the radicals (Ri__1)2(K, where the two

2

groups Rs—1 are identical. This makes a number equal to
2

T’x_—l = p's+l
2 2
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For z even there will be no radicals of type a.
Finally we get that for all values of x there will be a number of radicals

of type a equal to
A plaia
2

B) Let the radical of type B also contain x carbon atoms. The total number
of bivalent radicals, containing z carbon atoms, of type e and type g is found
equal to I', ;. This may be derived in the following manner. Kvery alkine,
C,;1H,,, is of the form R, ;—C=C—H or R,—C=C—R,, where a + b =
x—1. If the triple bond in such an alkine is broken off and the one carbon
atom, contained in the triple bond, is removed, then fiom each such alkine
one radical may be derived, namely either R"—I\C/ or Ha\ C/ . In this

’ 1: 7 \ Rb/ \
way no stereoisomerism is destroyed, and all possible bivalent radicals must
appear.

For x = 1 there will be no radicals of type f.

For x > 1 there will be (I',,; — 4. pz+1) radicals of type f.

However, using (13) we get: 2

Ilz+1—l'p”‘_+1=p’x+%'s’z+ﬂ"%'p,"‘:—l—l'p,‘fﬂ'
2 2
=p,x+%'slx—l'%'p,f_ﬂ'
2
In the following considerations it is assumed that n > 2, and that each
alkene may be considered as constructed of two bivalent radicals with res-
pectively g and k carbon atoms, where g < h, and g + h = n.

For g = 1 there will be 1 radical of type a and none of type f.
For g > 1 there will be 1- p’g+1 radicals of type e and
2

(’P'g +3- s'g — A} pletr) ra,dicalé of type § or altogether
2

(p,g + % : 'g'g + A- % . P'g+1) radicals.
2

For h > 1 (and this is always the case as n > 2) there will be 4 - p's+1
2

radicals of type a and (p’, + %", —A4-4%: p'as1) radicals of type g or a
total of (p’, + 4 -s", + A+ % - p'a+1) radicals.  *®
2
When a radical of type « is joined in a double bond to a radical of type a
or to a radical of type B no cis-trans isomerism is possible. On the other hand,
if a radical of type g is joined to a radical of type g both a cis form and a trans
form will occur.
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Now the following can be found:

Ey=p,1+tt-s1+2-%. P'u (term I)
+ 2@t A b ) P35+ A} par)  (term II)
1<g<h 2
g+h=mn
+$(P +3-8—4- ?x+1) P +%-8,—2A-%- ph+1 (term IIT)
1<g<h
g+h=n
+1-%-@é-+%-#% pnw) p +@~s +13- pmm+1)(umnIV)
+1'%(P';+%°8',,—%pn:2 (p —!—2 :;_% pn+z—|-1) (term V)

7
Term I is due to g =1 andh=n——l

Term II is due to 1 << g < h, when all alkenes are counted, those appearing

in both cis form and #rans form are, however, counted as one.

Term III is due to 1 < g < h, when each alkene appearing in both cis

form and trans form is counted as one again.

Term IV is due to g = b = 7}, when all alkenes are counted, those appearing

in both cis form and trans form are, however, counted as one.

Term V is due to g = h = 3, when each alkene appearing in both cis form

and ¢rans form is counted as one again.

By reduction we get:

E'n == pln—l + % * 'S’ n—1 + 2' % p/” (term I)
+2-Z@;+%4’(err )+ 4.} ZPHIPH1
1<g<h 1<g<h@mnH+HD
g+h=n g+h=nmn

+l(p-+%S) @ +3-8,+1)+4. i@nuz(WmIV+V)
2'
However, according to (9) the following must be true:

Aesly =A-2. 3T, T, + A (T'h2)?
z a<b 4
a-+b="2=

2

and by introduction of (8a) this can be written as:

Ad,=A-2.>p, -0, +2. (pn+2)2
T l<e<d
¢+ d ="t
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=242 Pler1- pht1 + A (P'ni2) 2
2 2 4

I1<g<h
g+h=mn
This expression for s’,, is substituted in the above formula for E’,:
T
By=py1+i-8uatd-3-0, +2- 3@, +15) 0% +1-50)
B 1<g<h
g+h=mn
+}.-i‘~8’" +l'(p’n +%'8’»)' (p’» —}—%'S'” + l)
or z 7 2 7 T
Ey=ppa+%-8,2+2 Z (p'g‘|‘“]2"*5"g)' (®'% + % 8%)
1<g<h
g+h=n
+1'(p'u+%'S,n)'(p,n"}_%"g,”—i_%) (14)
7 z z 2

This formula is valid for » > 2, but it is easily found that £’y = 1.

2) The number of mon-stereoisomeric alkenes, E (ns ),. The non-stereoiso-
meric alkenes must be derived from two non-stereoisomeric bivalent radicals,
which are joined in a double bond in such a manner that no cis-trans isomerism
is produced. These bivalent radicals belong to one of the following two types:

a) The radicals in which two identical groups are attached to the carbon
atom which takes part in the double bond,

p) the radicals in which two identical groups are not attached to the
carbon atom which takes part in the double bond.

@) Let the radicals of type a contain z carbon atoms.

For x = 1 there will be only one radical, namely H,C<.

For x odd and > 1 there will be the radicals (Rs—1), C{, where the two

2

non-stereoisomeric groups R.—1 are identical. This gives altogether
2
T(ns)s—1 = p(ns)s+1
2 2

For x even there will be no radicals of type a.
Finally we get that for all values of x there will be a number of radicals
of type a equal to
%Mmgz
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B) Let the radical of type § also contain x carbon atoms. The total number
of bivalent radicals, containing x carbon atoms, of type a as well as type B,
is equal to I(ns),,,. This is seen in the same way as above, where the number
of stereoisomeric and non-stereoisomeric bivalent radicals was found.

The number of radicals of type 8 is consequently for all values of x equal to

I(n8),41— & - p(ns)ssa
2

In the following considerations it is assumed that each alkene may be con-
sidered as constructed of two bivalent radicals with respectively g and A car-
bon atoms, where g + 2 = n. To avoid cis-trans isomerism one of the radicals
must be of type a, while the other may be either of type « or of type B.

Now the following can be found:

E(ns), = 4- z p(ns)g+1 - I(ns), (term I)
g<h *?
g+h=mn
+ 2 z (L(n8)gy1 — p(ns)g+1) P(n8)h+1 (term IT)
g<h 2
g+h=mn _
+4-§- plnshasz - (plnshusz + 1) (term III)
+ 2 p(nS)n%z « (I(ns)n+2 — p(ns)n+2) (term IV)
2 4

Term I is due to g < h; the radicals of type a with g carbon atoms are
here combined with the total number of radicals with 2 carbon atoms.

Term II is due to g < k; the radicals of type g with g carbon atoms are
here combined with the radicals of type a with % carbon atoms.

Term III is due to g = h = %; the radicals of type a are here combined
mutually.

Term IV is due to g = h = %; the radicals of type a are here combined
with the radicals of type f.

By reduction we get:

Bns)y =2 3, p(ns)gs1 - I(ns)yya + I(ns)ys- plns)e] + he p(ns)ura - I(ns)nts
g < h
g9+h=mn

— 4.2 p(ns)+1 - mer—ﬂ%(ﬂmwﬂ + 4% - p(ns)rte
g<h 2 4
g+h=mn
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However, according to (11) the following must be true:

A-I(nshwsz = A- D p(ns)g+1- p(ns)asr + A- % - (P(ns)r+2) 2 + A+ - p(ns)+2
2 g<h 2 2 4 4
g+h=n

This expression is substituted in the above formula for E(ns),; we get:

E(ns), =22 pns)st1 - I(ns)yyy — 4 - I(nsjuia + A- pnshta (15)
2
g+h=mn

Note: The demand for g < % is dropped in the first term above.
3) The number of stereoisomeric alkenes, E(s),. Finally E(s), is found by

subtraction:
E(s)n = E’n _E(n's)n (16)

Numerical values of E’,, E(ns), and E(s), for n < 22 are calculated by
means of the formulas (14), (15) and (16) (Table 2). The results have been
checked by writing down all the formulas of the alkenes for n < 10.

Table 2. The number, E’y, of stereoisomeric and non-stereoisomeric alkenes, the number,
E (ns )y, of non-stereoisomeric alkenes and the number, E (s ),, of stereoisomeric alkenes
with n carbon atoms (1 <nZX 22).

n B, E(ns)y E(s)y
2 1 1 0
3 1 1 0
4 4 2 2
5 6 4 2
6 18 8 10
7 42 14 28
8 118 26 92
9 314 48 266
10 895 88 807
11 2 521 159 2 362
12 7 307 287 7 020
13 21 238 516 20 722
14 62 566 924 61 642
15 185 310 1 646 183 664
16 553 288 2 925 550 363
17 1 660 490 5184 1 655 306
18 5011 299 9163 5002 136
19 15 190 665 16 155 15 174 510
20 46 244 031 28 423 46 215 608
21 141 295 042 49 912 141 245 130

22 433 200 573 87 487 433 113 086
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FINAL REMARKS

The calculaticns in this paper follow the line which has been pointed out
by Henze and Blair. Calculations in connection with isomerism can also be
discussed mathematically as shown by Polya 12. Also approximations, becom-
ing more and more accvrate the greater n becomes, can be set up 3. Further
calculations by extrapolation can be carried through 4 5.

SUMMARY

Formulas for the number of isomeric alkines and alkenes — with and
without taking stereoisomerism into account — are derived.
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