A Spectrophotometric Study on Complex Formation in Dilute Aqueous Solution of Cupric Bromide

REINO NÄSÄNEN

Propaedeutic Chemical Laboratory of the University of Helsinki, Finland

Cupric bromide in aqueous solution exhibits an absorption band at 281 μm, at which wavelength cupric and bromide ions display practically no absorption. This can obviously be explained only by means of complex formation between cupric and bromide ions. Quantitative study proves difficult, however, because of the low degree of complex formation and of its complicated nature.

In sufficiently dilute solution, however, the complex Cu(H₂O)₃Br⁺ must be practically the only one. The application of the law of mass action to such a solution gives

\[[\text{Cu}^{2+}] [\text{Br}^-] / [\text{CuBr}^+] = K = K_0/F \]

where

\[f_{\text{Cu}^{2+}}f_{\text{Br}^-}/f_{\text{CuBr}^+} = F \]

is the activity coefficient and \(K_0 \) is the thermodynamic dissociation constant. The extinction of a 1 cm layer of such a solution is, according to Beer's law

\[e = \varepsilon [\text{CuBr}^+] \]

where \(\varepsilon \) is the molar extinction coefficient. From (1) and (3) we obtain

\[\log \frac{e}{(c-e/\varepsilon)} = \log \varepsilon/K_0 - pF \]

where \(c \) denotes the molarity of the cupric bromide solution. The activity coefficient may be represented by the Debye-Hückel equation

\[pF = \frac{2.04 \sqrt{I}}{1 + a\sqrt{I}} - BI \]
In sufficiently dilute solution \(e/\varepsilon \) in equation (4) is negligibly small in comparison with \(c \) and 2 \(c \). In such a case equations (4) and (5) can be used for the calculation of the quantities \(e/K_\alpha \), \(\alpha \) and \(B \) from the extinctions of a series of cupric bromide solutions, where the ionic strength is varied by addition of lithium or sodium perchlorate or perchloric acid. In practice the magnitude of the molar extinction coefficient determines how dilute the cupric bromide solutions may be.

Table 1. Light absorption measurements in dilute cupric bromide solutions with perchloric acid additions at 25°C.

<table>
<thead>
<tr>
<th>(\sqrt{T})</th>
<th>(c_{Cu} \cdot 10^3)</th>
<th>(e (\lambda = 280 \text{ m}_{\text{A}}))</th>
<th>(\log \frac{e}{(c-e/\varepsilon) \cdot (2c-e/\varepsilon)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.110</td>
<td>3.99</td>
<td>0.0274</td>
<td>2.938</td>
</tr>
<tr>
<td>0.151</td>
<td>7.62</td>
<td>0.0860</td>
<td>2.875</td>
</tr>
<tr>
<td>0.205</td>
<td>13.97</td>
<td>0.250</td>
<td>2.814</td>
</tr>
<tr>
<td>0.291</td>
<td>19.35</td>
<td>0.395</td>
<td>2.731</td>
</tr>
<tr>
<td>0.352</td>
<td>19.35</td>
<td>0.358</td>
<td>2.688</td>
</tr>
<tr>
<td>0.524</td>
<td>25.80</td>
<td>0.518</td>
<td>2.599</td>
</tr>
<tr>
<td>0.687</td>
<td>25.80</td>
<td>0.472</td>
<td>2.558</td>
</tr>
<tr>
<td>0.828</td>
<td>23.93</td>
<td>0.402</td>
<td>2.553</td>
</tr>
<tr>
<td>1.136</td>
<td>23.93</td>
<td>0.430</td>
<td>2.583</td>
</tr>
<tr>
<td>1.424</td>
<td>19.35</td>
<td>0.356</td>
<td>2.685</td>
</tr>
<tr>
<td>1.640</td>
<td>19.35</td>
<td>0.472</td>
<td>2.810</td>
</tr>
<tr>
<td>1.893</td>
<td>14.78</td>
<td>0.452</td>
<td>3.028</td>
</tr>
</tbody>
</table>

In Table 1 the measurements in perchloric acid solutions are recorded. Similar measurements were carried out in lithium and sodium perchlorate solutions. Wavelengths of 270, 280, 290, 300 and 310 m\(_{\text{A}}\) were used. The results were independent of wavelength. For the constants \(\alpha \) and \(B \) the following values were obtained:

\[
\begin{array}{ll}
\text{HCIO}_4 & 1.476 \\
\text{LiClO}_4 & 1.476 \\
\text{NaClO}_4 & 1.476 \\
\end{array}
\]

\[
\begin{array}{ll}
\alpha & B \\
0.252 & 0.213 \\
0.190 & \\
\end{array}
\]

In the calculation the value \(\varepsilon = 1480 \), obtained in a way described later in this paper, was used. These results did not, however, differ much from the results calculated using the value \(\varepsilon = \infty \). For instance in perchloric acid solution the values \(\alpha = 1.472 \) and \(B = 0.250 \) were obtained when the value \(\varepsilon = \infty \) was used. The values of \(\alpha \) and \(B \) are of a reasonable magnitude. This is thus in agreement with the assumption made above that in the dilute cupric
bromide solutions investigated, the first complex \(\text{Cu(H}_2\text{O)}_6\text{Br}^+ \) is practically the only one present. Supposing that the complex in question is a higher one we obtain from the experimental data an unreasonably steep curve representing the relation between \(pF \) and \(\sqrt{I} \). In Fig. 1 the activity coefficient is plotted against the ionic strength.

For the quotient \(\varepsilon/K_\theta \) the value 1340 was obtained by the above way. A more accurate value for this quantity can, however, be obtained by means of measurements in cupric bromide — sodium bromide solutions. In this case the equation

\[
\log \frac{\varepsilon}{(c_{\text{Cu}}-\varepsilon/\varepsilon)(c_{\text{Br}}-\varepsilon/\varepsilon)} = \log \frac{\varepsilon}{K_\theta} - pF
\]

(6)

was used where \(c_{\text{Cu}} \) is the total copper and \(c_{\text{Br}} \) the total bromide concentration. This equation is analogous to equation (4) and the lower the bromide concentration the better is its validity. In Table 2 a series of experiments in cupric bromide — sodium bromide solutions is recorded. These experiments were also carried out at 280 m\(\mu \). It is significant that the value of \(\varepsilon/K_\theta \) calculated by means of equation (6) proved to be nearly independent of the value of \(\varepsilon \) used. On the contrary \(a \), and even more \(B \), are highly dependent on the value of \(\varepsilon \). For instance the following values were obtained:

\[
\begin{array}{c|c}
\varepsilon & \log \varepsilon/K_\theta \\
\hline
\infty & 3.1183 \\
1420 & 3.1202 \\
1000 & 3.1206 \\
\end{array}
\]

By means of this extrapolation procedure the value of \(\varepsilon/K_\theta \) may thus be determined irrespective of the unquestionable existence of higher complexes.

Finally the thermodynamic dissociation constant \(K_\theta \) may be estimated from the data recorded in Table 2 by means of the equation
SPECTROPHOTOMETRIC STUDY

\[K_0 = \frac{\epsilon/\epsilon_{Cu}}{\epsilon/K_0 - e/\epsilon_{Cu}} \ [\text{Br}^-] F \] \hspace{1cm} (7)

Table 2. Light absorption of mixed solutions of cupric bromide and sodium bromide. The estimation of the thermodynamic dissociation constant of the complex Cu(H₂O₃)Br⁺.

<table>
<thead>
<tr>
<th>V/I</th>
<th>e</th>
<th>(c_{Cu} \cdot 10^3)</th>
<th>(c_{Br})</th>
<th>(pF)</th>
<th>(K_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>((\epsilon = \infty))</td>
</tr>
<tr>
<td>0.109</td>
<td>0.027</td>
<td>3.99</td>
<td>0.00798</td>
<td>0.190</td>
<td>6.76</td>
</tr>
<tr>
<td>0.205</td>
<td>0.247</td>
<td>13.97</td>
<td>0.0279</td>
<td>0.313</td>
<td>1.77</td>
</tr>
<tr>
<td>0.348</td>
<td>0.112</td>
<td>2.17</td>
<td>0.1143</td>
<td>0.446</td>
<td>0.80</td>
</tr>
<tr>
<td>0.410</td>
<td>0.825</td>
<td>13.97</td>
<td>0.1440</td>
<td>0.489</td>
<td>1.18</td>
</tr>
<tr>
<td>0.572</td>
<td>0.860</td>
<td>8.38</td>
<td>0.309</td>
<td>0.570</td>
<td>1.30</td>
</tr>
<tr>
<td>0.598</td>
<td>0.153</td>
<td>1.343</td>
<td>0.353</td>
<td>0.508</td>
<td>1.26</td>
</tr>
<tr>
<td>0.640</td>
<td>0.154</td>
<td>1.236</td>
<td>0.405</td>
<td>0.593</td>
<td>1.17</td>
</tr>
<tr>
<td>0.850</td>
<td>0.159</td>
<td>0.820</td>
<td>0.720</td>
<td>0.631</td>
<td>1.19</td>
</tr>
<tr>
<td>0.941</td>
<td>0.153</td>
<td>0.671</td>
<td>0.883</td>
<td>0.635</td>
<td>1.11</td>
</tr>
</tbody>
</table>

mean value 1.06

which follows from equation (1). This equation is strictly valid only at a sufficiently low bromide concentration, but by means of an extrapolation procedure the value of \(K_0\) can obviously be estimated. The calculation was carried out as follows. At first the activity coefficient in sodium perchlorate solutions was calculated by means of equation (4) using the value \(\epsilon = \infty\). Then the value of \(\epsilon/K_0\) was estimated by means of equation (6) using the value \(\epsilon = \infty\). Using these values of \(F\) and \(\epsilon/K_0\) the thermodynamic constant \(K_0\) was now calculated by means of equation (7). These values are recorded in Table 2. As is seen these \(K_0\) values are within the limits of experimental error independent of the bromide concentration except at low concentrations. With the aid of the mean value of these approximate \(K_0\) values the molar extinction coefficient \(\epsilon\) can now be calculated. With this \(\epsilon\) value the calculation process was repeated and after a short series of approximations the values of the constants did not vary. The final values of \(K_0\) are represented in the last column of Table 2. The mean value of \(K_0\) was \(K_0 = 1.06\) and the corresponding value of the molar extinction coefficient was \(\epsilon = 1480\) (\(\lambda = 280 \text{ m}\mu\)).

It is interesting that the \(K_0\) values obtained at 280 m\mu are not dependent on the bromide concentration. This is not due to the absence of higher complexes because at other wavelengths, for instance at 310 m\mu, the \(K_0\) values obtained in the above way are highly dependent on the bromide concentration. The explanation is no doubt as follows. When the higher mononuclear complexes are considered, the equation
\[
K_\theta = \frac{e/\epsilon_{\text{Cu}}}{e/K_\theta - e/\epsilon_{\text{Cu}} [\text{Br}^-] F + \frac{1}{F} \sum \epsilon_{\nu} [\text{Br}^-]^\nu/K_\nu - \frac{e}{c_{\text{Cu}} [\text{Br}^-]^F} \sum [\text{Br}^-]^\nu/K_\nu}
\]

is obtained instead of equation (7). In this equation \(K_\nu \) denotes the dissociation constant of the complex \(\text{CuBr}_\nu \) and is defined by

\[
K_\nu = \frac{[\text{Cu}^{++}] [\text{Br}^-]^\nu}{[\text{CuBr}_\nu]}
\]

\(\epsilon_{\nu} \) being the corresponding molar extinction coefficient. In the sums only terms with \(\nu \geq 2 \) are included. Equation (8) differs from equation (7) by two additional sum terms of which the first one is positive and contains molar extinction coefficients and is therefore dependent on the wavelength. The second one is negative. It is therefore possible that at a certain wavelength and in a limited range of bromide concentration the higher complexes have no effect on the results within the limits of the experimental error.

A Beckman Quartz Spectrophotometer Model DU with 1 cm and 5 cm cells was used in the light absorption measurements. The chemicals when not of the best quality obtainable, were recrystallized many times. Concerning further experimental details, the reader is referred to the previous papers by the present author.

SUMMARY

Complex formation in concentrated solutions of cupric bromide is very complicated but in sufficiently dilute solutions the complex \(\text{Cu(H}_2\text{O)}_2\text{Br}^{++} \), obviously, is practically the only one. Complex formation in such dilute solutions is so slight that the concentration of the complex ion can be neglected as compared to the total copper concentration but the molar extinction coefficient is so large that it is possible to follow the change in the concentration of the complex. Therefore the determination of the activity coefficient of the complex in alkali perchlorate and perchloric acid solutions was possible spectrophotometrically and the accuracy obtained was considerable. Further a method for the estimation of the thermodynamic dissociation constant from extinction measurements is described and it is applied to dilute aqueous solutions of cupric bromide.

REFERENCES

Received May 16, 1950.